• Title/Summary/Keyword: 계류안전성

Search Result 92, Processing Time 0.027 seconds

클라우드 컴퓨팅 환경에서의 개인정보보호 이슈

  • Kim, Jin Hyung
    • Review of KIISC
    • /
    • v.24 no.6
    • /
    • pp.25-30
    • /
    • 2014
  • 최고 수준의 IT인프라를 활용하는 클라우드 컴퓨팅 서비스의 확산에 따라 스마트 폰을 활용하여 언제든지 원하는 서비스 요청이 가능하게 되었다. 그러나 이러한 최신 IT서비스의 이면에는 보안 위협이 존재한다. 클라우드 서비스를 통해 데이터 뿐 아니라 개인정보의 수집 및 활용 또한 용이해지면서, 개인정보 유 노출 및 악용의 위험이 높아지고 있어, 이러한 사항을 고려한 클라우드 보안 방안을 마련할 필요가 생겼다. 클라우드 컴퓨팅 서비스 제공자가 개인정보보호에 대한 충분한 방안을 마련하고 시행할 수 있도록, 정부의 법제 마련 등 범국가적 지원이 필요한 상황이다. 이에 정부는 2013년부터 추진하고 있는 "클라우드 컴퓨팅 발전 및 이용자 보호에 관한 법률안"을 통해 클라우드 산업 활성화를 위하여 정부가 지원 방안을 마련하고자 하나, 개인정보에 대한 세밀한 검토 후 수정 보완 하여 한다는 의견이 있어, 현재 국회에 계류중이다. 본고에서는 클라우드 컴퓨팅 서비스의 발전과 클라우드 환경에서의 개인정보보호 이슈를 정리 해보고, 클라우드 컴퓨팅 서비스를 이용하는 서비스 이용자의 개인정보 안전성을 보장하고 서비스 제공자의 잠재적 개인정보 침해 위험을 줄일 수 있는 방향을 생각 해 보고자 한다.

자율운항선박 6종서비스 성능검증을 위한 인프라 연구

  • 성창호;문성배
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.219-220
    • /
    • 2021
  • 자율운항 선박 지원 6종 서비스는 인공지능 센서 기반 선박 접/이안 및 계류지원 서비스, 화물 양적하 및 선박 입출항 지원, 선박과 터미널 간 실시간 정보 교류를 통한 운항정보 동기화, PSC 점검지원, 선박의 주요 기기를 육상 시범운영센터에서 표출하는 상태모니터링 지원 서비스, 해양사고 발생 시 신속한 조치을 위한 사고 대응지원 서비스로 구성되어 있다. 이 연구에서는 개발되는 6종 서비스 성능검증이 원활히 수행될 수 있도록 육상과 실선박에 설치되어야 하는 장비, 선박과 육상서비스 센터의 데이터 전송을 위한 네트워크 인프라 그리고 종합 상황실 역할의 육상 시범운영센터를 구축하여 안전운항을 위해 6종서비스가 이루어 져야한다.

  • PDF

A Study on the Development of Anchoring Manual for T.S. HANBADA (실습선 한바다호의 묘박 지침 개발에 관한 연구)

  • Jung, Chang-Hyun;Kong, Gil-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • Typhoons are usually influencing at least 3 or 4 times per year in Korean peninsula and they accompanied with strong winds and heavy rains and then brought tremendous loss of properties and lives. Especially typhoon "MAEMI" resulted in a lot of marine accidents of vessels such as sinking, stranding, collision etc. at anchoring or on berthing in pier. If the typhoon comes up to expected area influencing the incidents, the vessel tries to escape from the route of typhoon or anchor in sheltering anchorage. However, consideration of the anchoring or judgement of ship's safety against strong winds is decided only by the experience of operators without detail evaluation of the safety. Therefore, this paper evaluated the safety of T.S. HANBADA by comparing the external forces with the holding powers. Furthermore, based on this evaluation, the anchoring manual was produced for the maximum endurable wind velocity, the general precautions and the actions taken on the ship with steps.

  • PDF

Estimation of Structural Safety for PolyEthylene (PE) Floating Platforms with API & AISC Standards (API & AISC 기준을 적용한 PolyEthylene (PE) 부유식 플랫폼의 구조 안전성 검토)

  • Seo, Kwang-Cheol;Nam, Taek-Kun;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.237-243
    • /
    • 2019
  • Floating platforms made of PE (PolyEthylene) are often located in shallows of seas, rivers or lakes. They are widely used for marine pensions, marine pontoons, marine bridges, etc. These products are characterized by good flexibility, recyclability, chemical resistance and weatherability with corrosion resistance. Existing PE floating platforms have a simple structure in which one pipe is fastened to one bracket, but this has limited application, even if a user modifies the arrangement. Therefore, we developed a structure that allows buoyancy pipes of various sizes to be fastened to one bracket and verified the structural safety of the product using the finite element method. From the results of structural analysis for buoyancy pipes of different diameters, the maximum stress ratio was 0.78 compared with allowable criteria of 1.0, which represented sufficient safety for a model with 500 mm diameter pipes. Based on the results of this study, further research to evaluate the structural safety of various floating platforms can be carried out in the further; it will also be necessary to establish related evaluation criteria.

Effect of Freshwater Discharge on the Nakdong River Estuary: Mooring Observations of Water Temperature and Salinity (낙동강 하구의 담수 방류와 표층 수온 및 염분 반응 : 계류형 센서 연속관측 결과)

  • Kim, Sangil;Youn, Seok-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.89-95
    • /
    • 2019
  • Mooring observations of water temperature and salinity were conducted to investigate the effects of freshwater discharge patterns on the mouth of Nakdong River from April 2017 to March 2018. More than $500-1000m^3\;s^{-1}\;d^{-1}$ of freshwater was frequently discharged into the estuary throughout the rainy season, but less than $200m^3\;s^{-1}\;d^{-1}$ was discharged through the normal season. Sluice gates of the estuarine barrage operated depending on the tide level during spring tide, but they were constantly open during neap tide. Water temperature and salinity fluctuated regularly with intermittent discharges of freshwater, whereas they were stable while freshwater discharge was continuous. Mean salinity was 29 during the study period. Salinity exceeded the mean value in the normal season and rapidly recovered after a temporary reduction. In contrast, water with salinity below the mean value prevailed in the estuary for three months over the rainy season. These results indicate that water temperature and salinity were affected by the amount of freshwater discharge, as well as the frequency of discharge on a large scale and the time over which the freshwater discharge continued.

Movements Simulation of Debris Flow for Prediction of Mountain Disasters Risk Zone (산지재해 위험구간 예측을 위한 토석류 흐름 모의)

  • Chae Yeon Oh;Kye Won Jun;Bae Dong Kang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.71-78
    • /
    • 2022
  • Recently, mountain disasters such as landslides and debris flows have flowed along mountain streams and hit residential areas and roads, increasing damage. In this study, in order to reduce damage and analyze causes of mountain disasters, field surveys and Terrestrial LiDAR terrain analysis were conducted targeting debris flow areas, and debris flow flow processes were simulated using FLO-2D and RAMM models, which are numerical models of debris flows. In addition, the debris flow deposition area was calculated and compared and analyzed with the actual occurrence section. The sedimentation area of the debris flow generation section of the LiDAR scan data was estimated to be approximately 21,336 ㎡, and was analyzed to be 20,425 ㎡ in the FLO-2D simulation and 19,275 ㎡ in the case of the RAMMS model. The constructed topographical data can be used as basic data to secure the safety of disaster risk areas.

Performance Evaluation of the Full-Scale Active Mass Dampers based on a Numerical Model and Test (실물크기 능동형 제어장치의 수치모델 및 실험에 기초한 성능 평가)

  • Jeon, Min-Jun;Lee, Sang-Hyun;Woo, Sung-Sik;Mun, Dae-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.635-643
    • /
    • 2015
  • In this study, the experimental test results are given to confirm the control efficiency of the linear control algorithm used for designing the active mass dampers(AMD) which are supposed to be installed at Incheon international airport control tower. The comparison between the results from test and numerical analysis is conducted and it was observed that the AMD showed the control performance expected by the numerical model. The effects of the gain scheduling and constant-velocity signal added to the control signal calculated by the algorithm is identified through the observation that the AMD always show behavior within the given stroke limit without any loss of the desired control performance. The phase difference between the accelerations of the structure and the AMD were almost close to 90 degree, which implies that the AMD absorbed the structural energy effectively.

Assessment of Liquefaction Potential on Non-Plastic Silty Soil Layers Using Geographic Information System(GIS) and Standard Penetration Test Results (지리정보시스템 및 표준관입시험 결과를 이용한 비소성 실트질 지반의 액상화 평가)

  • Yoo, Si-Dong;Kim, Hong-Taek;Song, Byung-Woong;Lee, Hyung-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.2
    • /
    • pp.5-14
    • /
    • 2005
  • In the present study, the liquefaction potential in the area of the Incheon international airport was assessed by applying the data of both standard penetration tests and laboratory tests to the modified Seed & Idriss method. The analysis was performed against the non-plastic silty soil layer and silty sand soil layer existing within the depth of 20m and under the ground water level, having the standard penetration value(N) of below 20. Also, each set of data was mapped using the GIS(Geographic Information System) and the safety factor against the liquefaction potential ($FS_{liquefaction}$) was obtained by overlapping those layers. Throughout the analysis, it was found that there exists a potential hazard zone for the liquefaction, showing partially that the safety factor against the liquefaction potential is 1.0 to 1.5 below the standard safety factor criterion. It is further thought to be necessary that the liquefaction potential for the corresponding hazard zone be additionally assessed in detail.

  • PDF

A Relative Importance Evaluation of Bridge Navigational Equipment Using AHP (AHP를 이용한 선교항해장비의 상대적 중요도 평가)

  • Kwon, So-Hyun;Jeong, Woo-Lee;Moon, Serng-Bae
    • Journal of Navigation and Port Research
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • According to IMO, MASS is defined as a vessel operated at various levels independent of human interference. The safety navigation support service for MASS is designed to improve the safety and efficiency of MASS by developing public services on shore for ship arrivals/departures and for cargo handling. The safety navigation support service consists of a total of six types of services: autonomous operation, berthing/unberthing/mooring, cargo handling and ship arrival/departure service, PSC inspection, condition monitoring, and accident response support services. In order to support accident response service, the relative importance of a bridge navigational equipment was assessed by stratifying the navigation system to provide safe and efficient support services by objective judgment through specific and quantitative methods using AHP, one of decision-making methods used by an expert group. The survey was conducted by dividing the bridge navigational equipment into depth, location, and speed information. As a result of applying the AHP method, the importance of depth, location, and speed information was assessed. The relative importance of each equipment for providing location information was also assessed in order of Radar, DGPS, ECDIS, Gyro compass, Autopilot, and AIS. This was similar to survey results on the utilization of each operator's preference and its impact on marine accidents.

Dynamic Analysis of Floating Multi-Bodies Considering Crane Impact Loads (크레인 충격하중을 고려한 다중 부유체 운동해석)

  • Kim, Young-Bok;Kim, Yong-Yook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • The concept of the Mobile Harbor had been made recently as a kind of feeder vehicle to transfer a certain amount of container boxes (i.e. 250 TEU at a time) from main ocean container vessels over 5,000 TEU capacity to the container terminal on land. In a harbor a short distance apart from the land, the container loading/unloading operation has to be performed on the main deck of the Mobile Harbor using the container cranes in the state of side-by-side mooring with protection of fenders and robot arms in the gap. Even under the ocean condition of the sea state class 2 or 3, the operation has to be confirmed to be safely performed. In this situation, the floating bodies considering the multiple-body interaction effect also has to be examined whether they might behave safely or not. Especially, this study focuses on the dynamic behavior of the Mobile harbor when a container box is hanged on the crane and the impact load due to the slewing motion is imposed in a certain sea state. The motion response should be controlled within the motion level to assure the safe operation.