• Title/Summary/Keyword: 계류선박의 동요

Search Result 33, Processing Time 0.017 seconds

Optimized design and verification of Ship-type Floating Lidar Buoy system for Wind resource measurement in the Korean West Sea (서해안 해상풍력단지 풍황관측용 부유식 라이다 운영을 위한 선박형 부표식 최적화 설계 및 검증)

  • Yong-soo Gang;Jong-kyu Kim;Baek-beom Lee;Su-in Yang;Jong-wook Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.161-164
    • /
    • 2022
  • 부유식 라이다는 해상풍력단지 조성시 필수적으로 수행하고 있는 풍황관측 업무에 새로운 패러다임을 제공하고 있는 시스템으로, 전통적으로 풍황관측을 수행하고 있던 해상기상관측탑을 대체하여 사업 초기의 대규모 공사를 획기적으로 축소하여 시간과 비용을 절약하고, 환경적 영향을 최소화 하며, 지역사회의 반발 요소까지 줄일 수 있어 해당 업계의 표준으로 자리잡고 있는 중이다. 다만 부표식의 동요에 따른 외란적 요소가 관측자료의 신뢰성에 영향을 미치는 만큼 안정적인 플랫폼의 설계 및 검증이 매우 중요한 상황이며, 국내에서는 해당기술에 대한 늦은 진입으로 인해 다수의 외산장비 제조사들이 국내시장까지 선점하고 있는 상황이다. 한국의 서해안은 천해 환경으로 조석차가 매우 커 지역에 따라 강한 조류가 반복적으로 나타나며, 계절별로 상이한 강한 에너지의 파랑이 형성되는 등 플랫폼에 안정도에 많은 영향을 미치는 바다 환경을 갖고 있다. 본 논문에서는 이러한 복잡한 환경적 특성을 갖고 있는 우리나라의 해역에 라이다 운영에 적합한 부표식에 대한 연구를 수행하며, 우선적으로 적용하였던 선박형 부표식의 최적화 설계 및 검증 사례를 소개하고, 향후 다양한 플랫폼 개발에 토대가 되는 중요 개념을 도출하고자 한다.

  • PDF

A study on the estimation of wind noise level using the measured wind-speed data in the coastal area of the East Sea (동해 연안에서 관측된 풍속자료를 이용한 바람소음준위 추정 연구)

  • Park, Jisung;Kang, Donghyug;Kim, Mira;Cho, Sungho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.378-386
    • /
    • 2019
  • Unlike ship noise that radiates from moving ships, wind noise is caused by breaking waves as a result of the interaction between the wind and the sea surface. In this paper, WNL (Wind Noise Level) was modeled by considering the noise source of the wind as the bubble cloud generated by the breaking waves. In the modeling, SL( Source Level) of the wind noise was calculated using the wind-speed data measured from the weather buoy operated in the coastal area of the East Sea. At the same time as observing the wind speed, NL (Noise Level) was continuously measured using a self-recording hydrophone deployed near the weather buoy. The modeled WNL according to the wind speed and the measured NL removing the shipping noise from the acoustic raw data were compared in the low-frequency band. The overall trends between the modeled WNL and the measured NL were similar to each other. Therefore, it was confirmed that it is possible to model the WNL in the shallow water considering the SL and distribution depth of bubble cloud caused by the wind.

An Experimental and Numerical Study on the Survivability of a Long Pipe-Type Buoy Structure in Waves (긴 파이프로 이뤄진 세장형 부이 구조물의 파랑 중 생존성에 관한 모형시험 및 수치해석 연구)

  • Kwon, Yong-Ju;Nam, Bo-Woo;Kim, Nam-Woo;Park, In-Bo;Kim, Sea-Moon
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.427-436
    • /
    • 2018
  • In this study, experimental and numerical analysis were performed on the survivability of a long pipe-type buoy structure in waves. The buoy structure is an articulated tower consisting of an upper structure, buoyancy module, and gravity anchor with long pipes forming the base frame. A series of experiment were performed in the ocean engineering basin of KRISO with the scaled model of 1/ 22 to evaluate the survivability of the buoy structure at West Sea in South Korea. Survival condition was considered as the wave of 50 year return period. Additional experiments were performed to investigate the effects of current and wave period. The factors considered for the evaluation of the buoy's survival were the pitch angle of the structure, anchor reaction force, and the number of submergence of the upper structure. Numerical simulations were carried out with the OrcaFlex, the commercial program for the mooring analysis, with the aim of performing mutual validation with the experimental results. Based on the evaluation, the behavior characteristics of the buoy structure were first examined according to the tidal conditions. The changes were investigated for the pitch angle and anchor reaction force at HAT and LAT conditions, and the results directly compared with those obtained from numerical simulation. Secondly, the response characteristics of the buoy structure were studied depending on the wave period and the presence of current velocity. Third, the number of submergence through video analysis was compared with the simulation results in relation to the submergence of the upper structure. Finally, the simulation results for structural responses which were not directly measured in the experiment were presented, and the structural safety discussed in the survival waves. Through a series of survivability evaluation studies, the behavior characteristics of the buoy structure were examined in survival waves. The vulnerability and utility of the buoy structure were investigated through the sensitivity studies of waves, current, and tides.