• Title/Summary/Keyword: 계류력

Search Result 129, Processing Time 0.024 seconds

A Study on the Slowly Varying Wave Drift Force Acting on a Semi-Submersible Platform in Waves (반잠수식 시추선에 작용하는 장주기 표류력에 관한 연구)

  • S.Y.,Hong;P.M.,Lee;D.C.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.49-63
    • /
    • 1989
  • Wave drift forces which are small in magnitudes compared to the first order wave exciting forces can cause very large motion of a vessel in waves. In this paper a theoretical and experimental analysis is made of the mean and slowly varying wave dirft forces on the semi-submersible platform. Theoretical calculations are performed by using near field method with three dimensional diffraction theory and model tests are carried out in regular and irregular waves with a 1/60 semi model. Test results are compared with theoretical calculations and the mooring spring effects in the test are discussed.

  • PDF

Behavior Analysis and Control of a Moored Training Ship in an Exclusive Wharf (전용부두 계류중인 실습선의 선체거동 해석 및 제어에 관한 연구)

  • Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.139-145
    • /
    • 2017
  • Recently, gusts, typhoon and tsunamis have been occurring more frequently around the world. In such an emergency situation, a moored vessel can be used to predict and analyze other vessel behavior, but if the mooring system is destroyed, marine casualties can occur. Therefore, it is necessary to determine quantitatively whether a vessel should be kept in the harbour or evacuate. In this study, moored ship safety in an exclusive wharf according to swell effects on motion and mooring load have been investigated using numerical simulations. The maximum tension exerted on mooring lines exceeded the Safety Working Load for intervals 12 and 15 seconds. The maximum bollard force also exceeded 35 tons (allowable force) in all evaluation cases. The surge motion criteria result for safe working conditions exceeded 3 meters more than the wave period 12 seconds with a wind speed of 25 knots. As a result, a risk rating matrix (risk category- very high risk, high risk and moderate risk) was developed with reference to major external forces such as wind force, wave height and wave periods to provide criteria for determining the control of capabilities of mooring systems to prevent accidents.

Analysis of Motions and Moorings of a Berthed Ship (정박된 선박의 운동 및 계류력 분석)

  • Jo, Chul-Hee;Chung, Kwang-Sic
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.204-208
    • /
    • 2002
  • Mooring is the operation of securing a ship to a wharf or quay by means of rapes or chains. A. moored ship need not necessarily be truly stationary. It may be free to rise and fall with the tick or the loading and unloading of cargo or to oscillate in response to the action of the environmental forces. In this respect a moored ship is restricted to a limited amount of movement within well-defined bounds. This study is intended to analyze the tension of mooring lines by a FEM program, as the current velocities and working directions are varied. The motion of a berthed ship is studied concerning with the wave periods and the direction. Also the behavior of the modeled vessel are investigated for a berthed condition.

  • PDF

Slow Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 저주파수 운동 해석)

  • 이호영;박종환;곽영기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.195-201
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizontal plane motions such as surge, sway and yaw. The added mass, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from three-dimensional panel method in the frequency domain. The mooring lines are modeled as quasi-static catenary cable. As a numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

A Study on Longline Type Aquaculture Facilities in the Open Sea : Frequency Domain Analysis of Cable-Buoy-Weight Mooring System (내파성 가리비 연승식 양식시설에 관한 연구 - 케이블-부이-중량물 계류시스템의 주파수 영역 해석 -)

  • Shin, H.;Kim, D.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.162-174
    • /
    • 1996
  • Longline type aquaculture facilities in the open sea are based on the cable-buoy-weight mooring system. For their optimal design it is necessary to estimate tensions along the mooring lines including the attachment points of buoys and weights. However, the dynamic analysis is very complicated due to the nonlinear behaviors of the mooring lines and the effects of wave and current. In this paper, parametric studies for various buoy-weight cases are shown. Finite difference scheme is employed in obtaining eigenfrequencies in the frequency domain. Nonlinear hydrodynamic drag forces are equivalently linearized.

  • PDF

Conceptual Design of Deep-sea Multi-Point Mooring by using Two-Point Mooring (2점지지계류를 활용한 심해 부유체의 다점지지계류 개념설계)

  • Park, In-Kyu;Kim, Kyong-Moo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.462-467
    • /
    • 2008
  • In this paper, we investigated the design method of mooring system in ultra deep sea and carried out the conceptual design for offshore West Africa oil field in ultra deep sea of 3000 meters. Recently, it was feasible to design and install the offshore floating structures in deep sea of up to 2000 meters. Due to the simplicity, two-point mooring design is fully utilized. Force-excursion curves are throughly examined to find out the feasibility of various combinations of mooring lines. Free length and pretension effects are discussed. It is found that composite materials including synthetic fiber rope may be good solution for ultra deep sea mooring design.

Calculation of the Dynamic Contact Force between a Shipbuilding Block and Wire Ropes of a Goliath Crane for the Optimal Lug Arrangement (최적 러그 배치를 위한 골리앗 크레인의 와이어 로프와 선체 블록간의 동적 접촉력 계산)

  • Ku, Nam-Kug;Roh, Myung-Il;Cha, Ju-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.375-380
    • /
    • 2012
  • In this study, dynamic load and dynamic contact force between a building block and wire ropes of a goliath crane are calculated during lifting or turn-over of a building block for the design of an optimal lug arrangement system. In addition, a multibody dynamics kernel for implementing the system were developed. In the multibody dynamics kernel, the equations of motion are constructed using recursive formulation. To evaluate the applicability of the developed kernels, the interferences and dynamic contact force between the building block and wire ropes were calculated and then the hull structural analysis for the block was performed using the calculation result.

Hydrodynamic Interaction Effects Between Vessels in Confined Waters (제한수역에서 항행선박이 계류중인 선박에 미치는 간섭영향에 관한 연구)

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.799-804
    • /
    • 2011
  • The hydrodynamic interaction effects between the multi-bodies can not be neglected when vessels are close to each other in congested and confined waters, such as in a harbour or narrow channel. Increase in speed and size of modern vessels make it necessary to consider this interaction effects when designing harbours and navigation channels. In this research, the hydrodynamic interaction effects of the spacing between vessels and water depth along with ship's velocity are summarized and discussed. The goal of this research is to propose a guideline of appropriate speed and distance between passing and moored vessels to avoid the influence of hydrodynamic forces and to navigate safely in confined sea areas.

안벽 방충재의 개선에 관한 연구(1)

  • Sin, Yong-Ju;Jeong, Tae-Gwon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.355-358
    • /
    • 2011
  • 방충재(fender)는 항만에서 선박의 안전한 접이안, 계류, 안벽 보호를 하기 위하여 설치된 중요한 안벽 시설 중 하나이다. 기존의 고무 방충재는 접안력에 의한 초기 변형 28% 정도에서 가장 높은 반력이 발생하기 때문에 선박과 안벽에 지속적인 힘을 주기 때문에 안벽 및 선체에 손상을 주고 있다. 이는 잔교식이나 중력식 부두에서도 나타나는 현상이다. 또 선체의 용접 비드에 의하여 방충재 훼손으로 보수 유지비가 증가하고 안벽에 앵커로 고정된 고무 펜더는 유연성이 떨어져 선박 충격에 의한 쉽게 떨어지고 패널패드도 탈락된다. 이 연구에서는 초기 반력이 적은 에어 펜더 혹은 폼 펜더를 제안한다.

  • PDF

Study on Effective Arrangement of Mooring Lines of Floating-Type Combined Renewable Energy Platform (부유식 복합 재생에너지 플랫폼 계류선의 효과적 배치에 관한 연구)

  • Choung, Joonmo;Jeon, Gi-Young;Kim, Yooil
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.22-32
    • /
    • 2013
  • This paper presents the conceptual design procedure for the taut-leg mooring lines of a floating-type combined renewable energy platform. The basic configuration of the platform is determined based on an understanding of floating offshore plants. The main dimensions and mass distribution are determined based on a hydrostatic calculation. To identify the motion history of the floating platform and the tension history of the mooring lines, a hydrodynamic analysis is executed using Ansys.Aqwa. This helps in the selection of the best configuration for the mooring system such as the number of mooring lines, wire types, anchored positions, etc. In addition, the fatigue life of the mooring lines can be predicted from the tension history using the rain-flow cycle counting method.