• 제목/요약/키워드: 계간 축열조

검색결과 2건 처리시간 0.015초

디퓨저 타입 계간 축열조 내부 열성층화에 대한 입구 유속 및 탱크 종횡비 영향 연구 (Effects of the aspect ratio and inlet velocity on the thermal stratification in a diffuser type seasonal thermal storage tank)

  • 김성근;정성용
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.99-105
    • /
    • 2021
  • In this study, the thermal stratification in solar seasonal thermal storage tanks was numerically simulated. The effects of the aspect ratio (AR) and inlet velocity on the thermal stratification in the diffuser type heat storage tank were investigated. The temperature distributions inside the tank were similar with velocity fields. Jet flows from opposite diffusers encountered each other at the tank center region. Thereafter, the downward flows occurred, and this flows strongly affected the thermal stratification. When AR was smaller than 2, these downward flows influenced a further distance and enhanced mixing inside the tank. Thermal stratification was evaluated by thermocline thickness and degree of stratification, and AR of 3 had the highest degree of stratification. The inlet velocity effect was expressed with the ratio (Re/Ri) of Reynolds and Richardson numbers. The second-order approximation was found for the relationship between the thermocline thickness and log Re/Ri.

태양열 계간 축열조 내부 열성층화에 대한 탱크 종횡비 영향 연구 (Effect of an aspect ratio on thermal stratification in a solar seasonal thermal storage tank)

  • 김성근;정성용
    • 한국가시화정보학회지
    • /
    • 제18권2호
    • /
    • pp.28-34
    • /
    • 2020
  • In this study, we numerically investigated the thermal stratification in solar seasonal thermal storage tanks. The vertical in/out flows were unsuitable for the thermal stratification in a large scale. The effect of an aspect ratio (AR) on the thermal stratification was investigated. When AR was less than 2, water adheres and flows along the upper wall due to buoyance and the surface effect. Thereafter, hot water flows down and a large scale vortex occurs in entire tank. For high AR, jet flows ejected from the inlet pipe impinges to the opposite wall and splits. The divided flows create two vortex flows in the upper and lower regions. These different flows strongly influence temperature and thermal stratification. The thermal stratification was evaluated in terms of the thermocline thickness and degree of stratification. Compared to ARs, the maximum degree of stratification was obtained with AR of 5 having the minimum thermocline thickness.