• Title/Summary/Keyword: 경암층발파

Search Result 1, Processing Time 0.013 seconds

Vibration Prediction and Charge Estimation in Hard Rock Blasting Site (경암층 발파현장에서 진동예측 및 장약량산정)

  • Park, Yeon-Soo;Park, Sun-Joon;Choi, Sun-Min;Mun, Soo-Bong;Mun, Byeong-Ok;Jeong, Gyung-Yul;Jeong, Tae-Hyeong;Hwang, Seung-Ill;Kim, Min-Jung;Park, Sang-Chul;Kim, Jung-Ju;Lee, Byeong-Geun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.313-319
    • /
    • 2009
  • The blasting has a lot of economic efficiency and speediness but it can damage to a neighbor structure, a domestic animal and a cultured fish due to the blasting vibration, then the public grievance is increased. Therefore, we need to manage the blasting vibration efficiently. The prediction of the correct vibration velocity is not easy because there are lots of different kinds of the scale of blasting vibration and it has a number of a variable effect. So we figure the optimum line through the least-squares regression by using the vibration data measured in hard rock blasting and compared with the design vibration prediction equation. As a result, we confirm that the vibration estimated in this paper is bigger than the design vibration prediction equation in the same charge and distance. If there is a Gaussian normal distribution data on the left-right side of the least squares regression, then we can estimate the vibration prediction equation on reliability 50%(${\beta}=0$), 90%(${\beta}=1.28$), 95%(${\beta}=1.64$). 99.9%(${\beta}=3.09$). As a result, it appears to be suitable that the reliability is 99% at the transverse component, the reliability 95% is at the vertical component, the reliability 90% is at the longitudinal component and the reliability is 95% at the peak vector sum component.