• Title/Summary/Keyword: 경사 AC/A

Search Result 22, Processing Time 0.024 seconds

Influence of Velocity on Pressure Drop of Flowing Ice Slurry in Elbow and its continued Inclined Tube (곡관과 연속된 경사관 내에서 유동하는 아이스슬러리의 압력손실에 미치는 유속의 영향)

  • Park Ki-Won;Kim Kyu-Mok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.635-641
    • /
    • 2005
  • This study experimented to understand the effects of transporting ice slurry through elbow and inclined tube. And at this experiment it used propylene glycol-water solution and a diameter of about 2mm ice particle. The experiments were carried out under various conditions, with velocity of water solution at the entry ranging from 1.0 to 3.5 w/s and elbows and inclined tubes of 4 kinds angle with $30^{\circ},\;45^{\circ},\;90^{\circ}\;and\;180^{\circ}$. The pressure drop between the tube entry and exit were measured. According to angle of bending, the highest pressure drop was measured at $30^{\circ}$ elbow and the lowest pressure drop was measured at $90^{\circ}$ elbow, and there are only a little differences of pressure drop between $45^{\circ}$ elbow and $180^{\circ}$ elbow. According to angle of inclined tube, the highest pressure drop was measured at $90^{\circ}$ inclined tube and the pressure drop at $45^{\circ},\;30^{\circ},\;180^{\circ}$ inclined tubes were lower successively. The lowest pressure drop in elbows and inclined tubes was measured at velocity of $2.0\~2.5$ m/s and concentration of $10\;wt\%$.

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(III)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (III)-동력경운의 경사지 견인성능-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.35-61
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 \ulcorner \frac {W_z \ulcorner{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} \ulcorner W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2\ulcorner "'16\ulcorner. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta \ulcorner \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.l slope land to improved its performance.

  • PDF

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(Ⅲ)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (Ⅲ)-동력경운의 경사지 견인성능-)

  • Song, Hyun Kap;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.34-34
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 ? \frac {W_z ?{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} ? W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2? "'16?. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta ? \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.

Evaluation of Surface Crack and Blind Crack by Induced Current Focusing Potential Drop(ICFPD) Technique (집중유도형 교류전위차법에 의한 표면결함 및 이면결함의 평가에 관한 연구)

  • Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.2
    • /
    • pp.86-94
    • /
    • 1996
  • In the life management safety evaluation of constructs base on a fracture mechanics, the size of defect is the very important parameter. ICFPD (Induced Current Focusing Potential Drop)technique has been developed for detecting and sizing of defects that exist not only on surface but also inside and interior of structural components. The principle of this technique is to induce a focusing current at an exploration region by a straight induction wire through which an alternating current (AC)flows that has constant amplitude and frequency. The potential distributed on the surface of metallic material is measured by potential pick-up pins that are settled on the probe. In this paper, this NDI technique was applied to the evaluation of surface cracks and blind cracks in plate specimens. The results of this study show that in the case of surface crack, the distribution of potential drop is varied with the inched angle of surface crack, and the potential drops in the crack region and the crack edge region are varied with the inclined angle and depth of crack. The distribution of potential drop for the blind crack is distingulished from that for the surface crack, and the potential drop in the crack region is varied with the depth of crack.

  • PDF

Design of Motor-driven Traveling System for High Clearance Working Machinery based on Tractive Performance and Hill Climbing Ability (견인 및 등판 성능을 통한 고소작업기계의 모터 주행장치 설계)

  • Lee, Sangsik;Jang, Seyoon;Kim, Taesoo;Nam, Kyoucheol;Park, Wonyeop
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.257-265
    • /
    • 2016
  • In this study, an optimal design for motor-driven track type traveling system applied into high clearance working machineries in orchard is proposed. Tractive performance and hill climbing ability were predicted and evaluated for the optimal motor traveling system by taking into account of soil characteristics in orchard utilizing the high clearance working machineries. Design criteria for tractive performance were based on the traction force calculated from tractive effort subtracted by motion resistance, while hill climbing ability had its design criteria that fulfill the climbing 20% slope ground at a speed of 3km/h. Based on the evaluation results of traction and climbing ability, two DC48V, 4500rpm, 1.6kW AC motors were independently applied to both left and right side of orbits; each motor is designed to transmit power on driving sprocket of track type traveling system via 50:1 reduction gear ratio. The motor-driven track type traveling system developed in the study found to have 396 kgf of tractive force, which is 12.5% higher than climbing resistance at orchard soil having 20% slope ground (352 kgf), demonstrating sufficient tractive performance and hill climbing ability.

A Study on Heat Transfer Coefficient of a Perfluorocarbon Heat Pipe (Perfluorocarbon 히트파이프의 열전달 계수에 관한 연구)

  • 강환국;김철주;김재진
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.194-201
    • /
    • 1998
  • In electric commuter trains using AC motors, lots of GTO thyristors and diodes are needed for power controls. These semiconductors generate heat about 1~2 kW, and for cooling which perfluorocarbon(PFC) heat pipes have been in use for the last two decades. The present study was investigated on the effects of such important design parameters as structure of internal surface (grooved or smooth), fill charge ratio, and inclinating angle from a vertical on heat transfer coefficients at both evaporators and condensers. To obtain experimental data, several heat pipes of the same geometry of 520 mm long and diameter of 15.88 mm but different in fill charge ratio and internal surface structure were designed and fabricated. For prediction of the heat transfer coefficients, related expressions were examined and the results of calculations were compared with experimental data. Performance tests were conducted while heat pipes operated at mode of thermosyphons. High enhancements of heat transfer coefficient were obtained internal grooves. In these cases, the evaporating heat transfer coefficients distributed in the range of 2~5.5 kW/$m^2$K, with an increase of heat flux from 15~45 kW/$m^2$. These experimental data were in good agreement with Rohsenow's expression based on nucleate boiling when correction factor $C_R$=1.3 was encountered. In addition, the condensation heat transfer coefficients were distributed from 1.5 to 3.5 kW/$m^2$K, and the data were in good agreements with Nusselt's correlation, based on filmwise condensation on vertical plate, when choosing a correction factor $C_N=4$. A fill charge ratio of 40~100% were recommended, and the in clination angle effects were negligible when the angle was higher then 30$^{\circ}$.

  • PDF

Precision Film Control of Roll to Roll System for RFID Printing (인쇄전자를 위한 롤투롤 시스템의 필름 정밀제어에 관한 연구)

  • Kim, Dong-Min;Choi, Jong-Guen;Kim, Hyung-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.867-874
    • /
    • 2010
  • RFID printing technology has emerged recently as an important tool for leading future IT. Therefore, many manufacturers concerning on low cost and mass production of the related products pay close attention to the printing technology. In order to realize printed electronics, the technologies for fine line-width/gap printing and registration are essential work. This study proposes a precise Roll to Roll control system that is capable of tilting two posts. Two controllable tilting posts can adjust film position at traverse direction for the precision registration. A mathematical model for representing the geometric features of each posts in Roll to Roll printing system is established first. Then an operating program is built to implement the system and to control film movement. For experimental test, a hard ware system is fabricated which is consisted of two AC servo motors, two posts tilting mechanisms, several guide rolls, and so on. The test results show the proposed system can control the film position precisely at transverse direction.

Numerical Analysis for Wave Propagation with Vegetated Coastal Area (연안해역에서의 수변식생에 의한 파란변형에 관한 수치해석)

  • LEE SEONG-DAE
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.63-68
    • /
    • 2006
  • Recently, it has been widely recognized that coastal vegetations may have great value in supporting fisheries, protecting from wave attack, stabilizing the sea bed and maintaining good scenery. Hydrodynamic factors play a major role in the functions of water quality and ecosystems. However, the studies on physical and numerical process of wave propagation are few and far behind compared to those on the hydrodynamic roles of coastal vegetations. In general, Vegetation flourishing along the coastal areas attenuates the incident waves, through momentum exchange between stagnated water mass in the vegetated area and rapid mass in the un-vegetated area. This study develops a numerical model for describing the wave attenuation rate in the complex topography with the vegetation area. Based on the numerical results, the physical properties of the wave attenuation are examined under various wave, geometric and vegetation conditions. Through the comparisons of these results, the effects of the vegetation properties, wave properties and model parameters such ac the momentum exchange coefficient have been clarified.

An Experimental Study on the Convective Boiling in Inclined Tubes (경사진 원형관내에서의 강제대류비등 열전달에 대한 실험적 연구)

  • 이홍욱;이준식;박군철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.674-681
    • /
    • 2001
  • An experiment is conducted to investigate the effect of the inclination angle on convective boiling heat transfer of a uniformly heated tube. The test section used is a stainless steel tube with10.7mm in inner diameter. The hating length is 3m and is heated directly by an AC current. The test fluid is R-113. Experiment are carried out with mass flow rates of 300, 500 and $700\;kg/m^{2}s$, and heat fluxes varying from 5 to 65 kW/$m^2$. The inclination angles of the tube are $0^{\circ},\;5^{\circ},\;11^{\circ}\;and\;25^{\circ}$. the circumferential temperature variation at low quality region and the location of dryout at high quality region are mainly observed. Circumferential anisothermality occurring at low mass flow rate and low quality conditions is gradually reduced with the increase in the inclination angle and finally disappears at the inclination angle of $25^{\circ}$. Critical quality where dryout is initiated is seriously influenced by the inclination angle. Wall temperature after critical quality is also affected by the inclination angle.

  • PDF

Electromyographic Analysis of a Uphill Propulsion of a Bicycle by Forward.Backward Pedaling (정.역구동 페달링에 따른 자전거 등판 시의 근전도 분석)

  • Shin, Eung-Soo;Kim, Hyun-Joong
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.171-177
    • /
    • 2008
  • This work intends to investigate the effects of pedaling directions on the muscle actions during the bicycle's uphill propulsion. A test rig was developed that consists of a bicyle with a special planetary geartrain, a height-adjustable treadmill, a rear-wheel support and a magnetic brake. A three-dimensional motion analysis was performed for measuring kinematic characteristics of the forward backward pedaling and the electromygraphy(EMG) measurements were simultaneously performed for estimating the muscle actions of the leg. In this work, four muscles are considered including Gastrocnemius muscle(GM), Vastus lateralis(VL), Tibialis anterior(TA) and Soleus(SOL) while the uphill slope is varied from $0^{\circ}$ to $6^{\circ}$. Raw EMG signals were first processed through the root-mean-square(RMS) averaging and then ensemble curves were derived by averaging the EMG RMS envelopes over 50 consecutive cycles. Results show that both the kinemactic characteristics and the muscle actions are significantly affected by the pedaling direction. The crank speed of the forward pedaling is higher but the difference in speed is reduced as the slope is increased. The ensemble curves of the :ac signals clearly exhibit some differences in their patterns, peak values and the corresponding locations with respect to the crank angle. The peak values of most EMG signals are higher for the forward pedaling regardless of the slope magnitude. However, the averages of the EMG signals are not observed to have a similar relationship with the pedaling direction, which seems to be affected by several factors such as less experience of the participants' backward pedaling. inappropriate bicycle design for the backward pedaling. These limitations will be further considered in future work.