• Title/Summary/Keyword: 경사방향/경사

Search Result 1,082, Processing Time 0.031 seconds

A Study on the Precise Lineament Recovery of Alluvial Deposits Using Satellite Imagery and GIS (충적층의 정밀 선구조 추출을 위한 위성영상과 GIS 기법의 활용에 관한 연구)

  • 이수진;석동우;황종선;이동천;김정우
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.363-368
    • /
    • 2003
  • We have successfully developed a more effective algorithm to extract the lineament in the area covered by wide alluvial deposits characterized by a relatively narrow range of brightness in the Landsat TM image, while the currently used algorithm is limited to the mountainous areas. In the new algorithm, flat areas mainly consisting of alluvial deposits were selected using the Local Enhancement from the Digital Elevation Model (DEM). The aspect values were obtained by 3${\times}$3 moving windowing of Zevenbergen & Thorno's Method, and then the slopes of the study area were determined using the aspect values. After the lineament factors in the alluvial deposits were revealed by comparing the threshold values, the first rank lineament under the alluvial deposits were extracted using the Hough transform In order to extract the final lineament, the lowest points under the alluvial deposits in a given topographic section perpendicular to the first rank lineament were determined through the spline interpolation, and then the final lineament were chosen through Hough transform using the lowest points. The algorithm developed in this study enables us to observe a clearer lineament in the areas covered by much larger alluvial deposits compared with the results extracted using the conventional existing algorithm. There exists, however, some differences between the first rank lineament, obtained using the aspect and the slope, and the final lineament. This study shows that the new algorithm more effectively extracts the lineament in the area covered with wide alluvlal deposits than in the areas of converging slope, areas with narrow alluvial deposits or valleys.

  • PDF

Background Gradient Correction using Excitation Pulse Profile for Fat and $T_2{^*}$ Quantification in 2D Multi-Slice Liver Imaging (불균일 자장 보정 후처리 기법을 이용한 간 영상에서의 지방 및 $T_2{^*}$ 측정)

  • Nam, Yoon-Ho;Kim, Hahn-Sung;Zho, Sang-Young;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.6-15
    • /
    • 2012
  • Purpose : The objective of this study was to develop background gradient correction method using excitation pulse profile compensation for accurate fat and $T_2{^*}$ quantification in the liver. Materials and Methods: In liver imaging using gradient echo, signal decay induced by linear background gradient is weighted by an excitation pulse profile and therefore hinders accurate quantification of $T_2{^*}$and fat. To correct this, a linear background gradient in the slice-selection direction was estimated from a $B_0$ field map and signal decays were corrected using the excitation pulse profile. Improved estimation of fat fraction and $T_2{^*}$ from the corrected data were demonstrated by phantom and in vivo experiments at 3 Tesla magnetic field. Results: After correction, in the phantom experiments, the estimated $T_2{^*}$ and fat fractions were changed close to that of a well-shimmed condition while, for in vivo experiments, the background gradients were estimated to be up to approximately 120 ${\mu}T/m$ with increased homogeneity in $T_2{^*}$ and fat fractions obtained. Conclusion: The background gradient correction method using excitation pulse profile can reduce the effect of macroscopic field inhomogeneity in signal decay and can be applied for simultaneous fat and iron quantification in 2D gradient echo liver imaging.

Analysis of the road surface runoff at the continuous section (연속구간 도로의 표면흐름 분석)

  • Kim, Jung Soo;Jo, Jun Beom;Kim, Soo Youl;Lee, Sung Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.242-242
    • /
    • 2020
  • 도시화와 산업화에 따른 유출환경의 변화로 인해 도심지에서 발생하는 대부분의 유출은 도로표면을 따라 이동하고 도로변에 설치된 빗물받이에 의해 배수된다. 이 때 빗물이 원활하게 배수되지 않아 노면수가 정체되고, 이 노면수가 인근 주택지로 유입되어 침수 피해가 발생한다. 이러한 현상은 유출량이 집중되는 도심지 저지대에서 주로 발생하며 설계 한도를 초과하지 않는 정상적인 강우 조건에서도 빈번히 나타나고 있다. 이는 최근의 기후 변화로 인한 집중 호우 등을 고려하여 설계 기준이 지속적으로 조정되어야 함과 동시에 도로 노면수의 배수 능력 평가를 위한 실제적인 연구가 이루어져야 한다는 필요성을 나타내고 있다. 특히 도로 빗물받이의 효율은 주로 종경사 및 횡경사 등의 도로 조건, 표면 유출 우수량, 빗물받이의 형상 등에 의존한다. 그러므로 상향된 설계빈도 및 도로 조건을 고려한 도로 표면 유출에 대한 흐름 분석과 빗물받이 특성을 고려한 실증연구의 분석 및 설계 해석 알고리즘의 개발이 시급한 실정이다. 본 연구에서는 도로 노면수의 배수 능력 증대를 위해 연속 설치된 빗물받이 조건 및 도로 경사조건을 고려하여 도로 배수시설의 표면 유출 모델 설계 알고리즘을 개발하였다. 표면 유출 유량은 도로의 차선(2~4차선), 경사(종경사 2~10% 및 횡경사 2~10%) 및 설계빈도(최대 30년)를 고려하였으며 유량이 노면 진행방향을 따라 연속적으로 증가하는 부등류 흐름 해석 방법을 채택하였다. 또한, 빗물받이 설치간격(L)과 도로의 폭(W)의 곱으로 계산되는 단순 직사각형 형태의 노면 형상이 아닌 도로 종경사 및 횡경사에 따른 유달거리를 산정하여 평행사변형 형태의 노면 형상을 계산하고 이에 따른 면적(A), 도달시간(tc) 및 강우강도(I)를 산정하였다. 이와 같은 1차원 흐름분석을 통해 도로 표면흐름 및 빗물받이 설치 간격을 제시하고 기존의 제시된 빗물받이 설치 간격과 비교하여 본 연구에서 제시한 설계 알고리즘을 검증하였다. 또한, 수리 실험을 통해 측정된 빗물받이 차집효율을 이용하여 연속 구간에서의 도로 표면 유출 모델의 적용성을 제시하였다. 이는 빗물받이 유입구를 통해 모든 유량이 유출된다고 가정하고 단독 구간에서의 수리분석 결과만을 고려하여 이를 확장시켜 개발된 기존의 도로 표면 유출 모델을 보완할 수 있을 것으로 기대된다. 본 연구에서 제시하고 있는 설계 알고리즘을 적용한다면 도로 전체 구간에서의 흐름 변화 분석과 배수효율의 정량적인 분석이 가능하므로 향후 도로 표면 침수 피해 저감 및 배수능력 증대를 위한 실증적이고 정량적인 분석 방법이 될 것으로 판단된다.

  • PDF

Field Study on Wireless Remote Sensing for Stability Monitoring of Large Circular Steel Pipe for Marine Bridge Foundation (해상 교량기초용 대형 원형강관 가설공법의 무선 원격 안정성 모니터링을 위한 현장실험)

  • Park, Min-Chul;Lee, Jong-Sub;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.71-81
    • /
    • 2020
  • The large circular steel pipe for a marine bridge foundation has been developed as a construction method capable of performing the role of the working platform and cofferdam. The objective of this study is to demonstrate the wireless remote sensing system for monitoring the stability of the large circular steel pipe during construction and operation through field tests. The artificial seabed ground with an water level of 4 m is constructed for field tests. The large circular steel pipe with a diameter of 5 m and height of 9.5 m is installed into the ground by suction, and the embedded depth is 5 m. The inclinometer and strain gauges are installed on different surfaces of the upper module, and the tilt angle and stress are monitored throughout the entire construction process. As results, tilt angles are measured to be constant during the suction penetration. However, the tilt angle is larger in the x-axis direction. In addition, even when installed on different surfaces, the tilt angle in the same axial direction is measured to be almost the same. The stresses measured by strain gauges increase during suction penetration and decrease during pull-out. Based on measured stresses, it is found that the eccentricity is acting on the large circular steel pipe. This study shows that a wireless remote sensing system built with an inclinometer and strain gauge can be a useful tool for the stability monitoring of the large circular steel pipe.

Experiment on Camera Platform Calibration of a Multi-Looking Camera System using single Non-Metric Camera (비측정용 카메라를 이용한 Multi-Looking 카메라의 플랫폼 캘리브레이션 실험 연구)

  • Lee, Chang-No;Lee, Byoung-Kil;Eo, Yang-Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.351-357
    • /
    • 2008
  • An aerial multi-looking camera system equips itself with five separate cameras which enables acquiring one vertical image and four oblique images at the same time. This provides diverse information about the site compared to aerial photographs vertically. The geometric relationship of oblique cameras and a vertical camera can be modelled by 6 exterior orientation parameters. Once the relationship between the vertical camera and each oblique camera is determined, the exterior orientation parameters of the oblique images can be calculated by the exterior orientation parameters of the vertical image. In order to examine the exterior orientation of both a vertical camera and each oblique cameras in the multi-looking camera relatively, calibration targets were installed in a lab and 14 images were taken from three image stations by tilting and rotating a non-metric digital camera. The interior orientation parameters of the camera and the exterior orientation parameters of the images were estimated. The exterior orientation parameters of the oblique image with respect to the vertical image were calculated relatively by the exterior orientation parameters of the images and error propagation of the orientation angles and the position of the projection center was examined.

Effect of Slope Exposure on Winter Hardiness of Grasses (경사방향이 목초의 월동성에 미치는 영향)

  • 이주삼;천소을
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.14 no.2
    • /
    • pp.93-98
    • /
    • 1994
  • This experiment was canied out to investigated the effect of slope exposure on winter hardiness of grasses in mountainous pastures of Taekwalyong area The results obtained were summarized as follows; 1. Plant vigour(PV) before wintering influenced on the growth of next spring, field survival rates and winter hardiness of grasses. 2. The dry weight of plant per relative tiller appearance rates(DW/RTAR) was significantly negative correlated with plant vigour(PV) before wintering, but the weight of plant per relative tiller appearance rates(DW1 RTAR) were significantly positive correlated with the number of tiller per plant before wintering($NT_O$), number of tillers per plant of 1st cutting(NT), dry weight of plant(DW), field survival rates(SR) and relative tiller appearance rate(RTAR). 3. There ranking order of high winter hardiness of grasses, it were west(W), north-north west(NNW), eastsoutheast( ESE) and south-southwest(SSW) exposure, respectively.

  • PDF

The Effect of Trailing Wake Asymmetry on a Propeller Blade Forces in Inclined Inflow (비대칭 후류를 고려한 경사축 추진기의 유동해석)

  • Sang-Woo Pyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 1998
  • Unsteady propeller blade forces arising from shaft inclination have been found to be an important contribution tn total blade forces. The position of the wake relative to a blade oscillates with the first blade frequency, thus giving rise to unsteady blade forces which is significant relative to the forces produced directly by flow inclination. In order to find a wake geometry due to shaft inclination, a non-axisymmetric wake model is developed and applied to a specific case, which has experimental values. Predicted cavity shapes and unsteady forces acting on the blades of an inclined shaft propeller are compared to those predicted by other numerical methods, as well as those measured in experiments.

  • PDF

A Unified Gradient Shape on the Slice-Selection Axis for Flow Compensation (스핀에코 펄스 시퀀스의 슬라이스 선택방향에서 혈류 보상을 위한 통일 경사자장법 연구)

  • Pickup, Stephen;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.70-80
    • /
    • 2006
  • Spin echo gradient moment nulling pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. A new technique was introduced for flow compensation that minimized echo time and effectively suppresses unwanted echoes on the slice selection gradient axis in spin echo sequences. A unified gradient shape was used in all orders of flow compensation up to the third order. A dual-purpose gradient was applied for flow compensation and to reduce unwanted artifacts. The sequences were used to generate images of phantoms and/or human brains. This technique was especially good at reducing eddy currents and artifacts related to imperfection of the refocusing pulse. The developed sequences were found to have shorter echo times and better flow compensation in through-plane flow than those of the previous models that were used by other investigators.

  • PDF

Dynamic Interaction of Single and Group Piles in Sloping Ground (경사지반에 설치된 단일말뚝과 무리말뚝의 동적 상호작용)

  • Tran, Nghiem Xuan;Yoo, Byeong-Soo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.1
    • /
    • pp.5-15
    • /
    • 2020
  • Dynamic behavior of pile foundation is significantly influenced by the dynamic interaction between soil and pile. Especially, in the sloping ground, the soil-pile interaction becomes very complex due to different resistance according to loading direction, soil residual displacement and so on. In this study, dynamic centrifuge tests were performed on the piles in the sloping ground. The model structures consisted of a single pile and 2×2 group pile. The soil-pile interaction has been investigated considering various conditions such as slope, single and group piles, and amplitude of input motions. The phase differences between soil and pile displacement and dynamic p-y curves were evaluated. The analysis results showed that the pile behavior was largely influenced by the kinematic forces between soil and pile. In addition, the dynamic p-y curve showed the complex hysteresis loop due to the effect of slope, residual displacement, and kinematic forces.

The Characteristics of Stress Distribution on Two-arch Tunnel's Pillar due to Surface Loads in the Discontinuous Rock Mass (불연속성 암반에 위치한 2-아치 터널에서 지표면 하중 작용시 필러에 전달되는 응력 특성)

  • Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.65-73
    • /
    • 2009
  • Large scale model tests and numerical analyses are performed to investigate the stress distribution of pillar due to surface loading nearby two-arch tunnel which is constructed in the regularly jointed rocks. It is observed that the influence of discontinuities on the stress distribution in the discontinuous rock mass and the underground stresses induced by surface loading are greater than those of linear elastic theory. Especially, lines of equal stresses are developed to the direction of inclination according to the inclined grade. In cases of discontinuities imbedded in parallel with or vertical to the ground, the pressure bulbs are formed symmetrically, however, the inclined ones result in stress distribution in parallel with and vertical to the planes of discontinuities. Results indicated that stress distribution is seriously affected by the angle of discontinuity. When stresses propagating to the pillar need to be estimated, relative location of surface loading, grade of discontinuous plane, and location of two-arch tunnel should be carefully considered.