• Title/Summary/Keyword: 경로추정

Search Result 987, Processing Time 0.026 seconds

Study on Cause Analysis of Capsizing Accident in Fishing Boat No. 66 Poongsung (어선 제66풍성호 전복사고 원인분석에 대한 연구)

  • Lee, Li-Na;Lee, Chang-Hyun;Ohn, Sung-Wook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.955-964
    • /
    • 2022
  • According to the statistics of maritime accidents statistics that have occurred in Korea over the past five years, maritime accidents caused by fishing boats have increased every year from 1,646 in 2016 to 2,100 in 2020. In particular, of the 378 capsizing accidents that have occurred in the past five years, 252 capsizing accidents of fishing boats account for a high proportion of 66.7%, therefore, it is urgent to come up with countermeasures. In this study, to determine the cause of the capsizing accident of fishing boat No. 66 poongsung, data such as stability and seawater inflow routes were collected, and the effects of waterproof, additional wood decks, and windbreakers on stability on were quantitatively analyzed. Additional decks, windbreakers, and waterproof installed in No. 66 poongsung cause initial list, deteriorate stability, and fail to meet fishing boat structural standards. In addition, it was analyzed that the stability was weakened due to the characteristics of the hull shape of No. 66 poongsung. To estimate the stability at the time of the accident, the stability at the time of the working in the fishing ground condition, amount of seawater inflow according to the change in sea conditions, hull oscillation situation, and change in stability due to the hull factor were calculated. As a result, the minimum GoM was satisfied at the time of working in the fishing ground, but it could not be restored at the maximum wave height of 4 m, and the minimum GoM was not satisfied at the maximum wave height of 4 m owing to the influence of seawater inflow and oscillation due to the hull list. However, the minimum GoM was satisfied if additional decks and windbreakers installation was excluded among the factors affecting the stability of No. 66 poongsung.

Association Between Psychiatric Medications and Urinary Incontinence (정신과 약물과 요실금의 연관성)

  • Jaejong Lee;SeungYun Lee;Hyeran Ko;Su Im Jin;Young Kyung Moon;Kayoung Song
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • Urinary incontinence (UI), affecting 3%-11% of males and 25%-45% of females globally, is expected to rise with an aging population. It significantly impacts mental health, causing depression, stress, and reduced quality of life. UI can exacerbate psychiatric conditions, affecting treatment compliance and effectiveness. It is categorized into transient and chronic types. Transient UI, often reversible, is caused by factors summarized in the acronym DIAPPERS: Delirium, Infection, Atrophic urethritis/vaginitis, Psychological disorders, Pharmaceuticals, Excess urine output, Restricted mobility, Stool impaction. Chronic UI includes stress, urge, mixed, overflow, functional, and persistent incontinence. Drug-induced UI, a transient form, is frequently seen in psychiatric treatment. Antipsychotics, antidepressants, and other psychiatric medications can cause UI through various mechanisms like affecting bladder muscle tone, altering nerve reflexes, and inducing other conditions like diabetes or epilepsy. Specific drugs like lithium and valproic acid have also been linked to UI, though mechanisms are not always clear. Managing UI in psychiatric patients requires careful monitoring of urinary symptoms and judicious medication management. If a drug is identified as the cause, options include discontinuing, reducing, or adjusting the dosage. In cases where medication continuation is necessary, additional treatments like desmopressin, oxybutynin, trihexyphenidyl, or amitriptyline may be considered.

Adolescent's Risk Behavior and the Quality of Life: the Role of Protective Factors on Risk Behavior (청소년의 위험행동과 삶의 질: 위험행동에 대한 보호요인의 역할)

  • Sang-Chul Han
    • Korean Journal of Culture and Social Issue
    • /
    • v.12 no.5_spc
    • /
    • pp.99-116
    • /
    • 2006
  • This paper discuss adolescent's a quality of life related with risk behavior. The purpose of this study investigate to influence on risk behavior(runaway, smoking, sexual behavior) of the protective factors that moderate adolescent's problem behavior(delinquency). The assumption of this study that the protective factors counterbalance the negative influence of risk factors and finally, diminish a the problem behavior including a delinquent. A total of 1,020 students of a vocational high schook and a 216 adolescents of a special groups(the public institution that consisted with a delinquent young man) completed the questionnaires(risk behavior, 5 protective factors) of compiled by this researcher. The protective factors have selected based on the various prior studies analyzed with adolescent's risk behavior a family functioning, a father(a mother) each and child communication, a self efficacy, and a social support. Statistics appled for the data analysis are Chisqure analysis, two-way ANOVA, and Standard Discrimination analysis. The results of this study are as follows. First, the special group is higher than the general group in the rate of runaway, smoking, and sexual deviant behavior. Second, the protective factors are not action in the special group have experienced delinquency, but are only action in the general group consisted with the students of a vocational high schools. This means that the protective factors discriminating the participation of the risk behaviors, and blocking out the intervention of a problem behavior in the general adolescents. Although each protective factor influence to different according to each risk behavior, a role of a parent-child communication, a family functioning, and self-efficacy high orderly. Finally, discussed based on the previous studies that the protective factors moderate the negative influence of risk factors, offset the connection between a risk behavior and a. problem behavior, and improve and a resilience and the quality of life of the adolescents.

Abundance and Occupancy of Forest Mammals at Mijiang Area in the Lower Tumen River (두만강 하류 밀강 지역의 산림성 포유류 풍부도와 점유율)

  • Hai-Long Li;Chang-Yong Choi
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.6
    • /
    • pp.429-438
    • /
    • 2023
  • The forest in the lower Tumen River serves as an important ecosystem spanning the territories of North Korea, Russia, and China, and it provides habitat and movement corridors for diverse mammals, including the endangered Amur tiger (Panthera tigris) and Amur leopard (Panthera pardus). This study focuses on the Mijiang area, situated as a potential ecological corridor connecting North Korea and China in the lower Tumen River, playing a crucial role in conserving and restoring the biodiversity of the Korean Peninsula. This study aimed to identify mammal species and estimate their relative abundance, occupancy, and distribution based on the 48 camera traps installed in the Mijiang area from May 2019 to May 2021. The results confirmed the presence of 18 mammal species in the Mijiang area, including large carnivores like tigers and leopards. Among the dominant mammals, four species of ungulates showed high occupancy and detection rates, particularly the Roe deer (Capreolus pygargus) and Wild boar (Sus scrofa). The roe deer was distributed across all areas with a predicted high occupancy rate of 0.97, influenced by altitude, urban residential areas, and patch density. Wild boars showed a predicted occupancy rate of 0.73 and were distributed throughout the entire area, with factors such as wetland ratio, grazing intensity, and spatial heterogeneity in aspects of the landscape influencing their occupancy and detection rates. Sika deer (Cervus nippon) exhibited a predicted occupancy rate of 0.48, confined to specific areas, influenced by slope, habitat fragmentation diversity affecting detection rates, and the ratio of open forests impacting occupancy. Water deer (Hydropotes inermis) displayed a very low occupancy rate of 0.06 along the Tumen River Basin, with higher occupancy in lower altitude areas and increased detection in locations with high spatial heterogeneity in aspects. This study confirmed that the Mijiang area serves as a habitat supporting diverse mammals in the lower Tumen River while also playing a crucial role in facilitating animal movement and habitat connectivity. Additionally, the occupancy prediction model developed in this study is expected to contribute to predicting mammal distribution within the disrupted Tumen River basin due to human interference and identifying and protecting potential ecological corridors in this transboundary region.

The Use of Radioactive $^{51}Cr$ in Measurement of Intestinal Blood Loss ($^{51}Cr$을 사용(使用)한 장관내(賜管內) 출혈량측정법(出血量測定法))

  • Lee, Mun-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 1970
  • 1. Sixteen normal healthy subjects free from occult blood in the stool were selected and administered with their $^{51}Cr$ labeled own blood via duodenal tube and the recovery rate of radioactivity in feces and urine was measured. The average fecal recovery rate was 90.7 per cent ($85.7{\sim}97.7%$) of the administered radioactivity, and the average urinary excretion rate was 0.8 per cent ($0.5{\sim}1.5%$) 2. There was a close correlation between the amount of blood administered and the recovery rate from the feces; the more the blood administered, the higher the recovery rate was. It was also found that the administration of the tagged blood in the amount exceeding 15ml was suitable for measuring the radioactivity in the stools. 3. In five normal healthy subjects whose circulating erythrocytes had been tagged with $^{51}Cr$, there was little fecal excretion of radioactivity (average 0.9 ml of blood per day). This excretion is not related to hemorrhage and the main route of excretion of such an negligible radioactivity was postulated as gastric juice and bile. 4. A comparison of the radioactivity in the blood and feces of the patients with $^{51}Cr$ labeled erythrocytes seems to be a valid way of estimating intestinal blood loss.

  • PDF

Spatial effect on the diffusion of discount stores (대형할인점 확산에 대한 공간적 영향)

  • Joo, Young-Jin;Kim, Mi-Ae
    • Journal of Distribution Research
    • /
    • v.15 no.4
    • /
    • pp.61-85
    • /
    • 2010
  • Introduction: Diffusion is process by which an innovation is communicated through certain channel overtime among the members of a social system(Rogers 1983). Bass(1969) suggested the Bass model describing diffusion process. The Bass model assumes potential adopters of innovation are influenced by mass-media and word-of-mouth from communication with previous adopters. Various expansions of the Bass model have been conducted. Some of them proposed a third factor affecting diffusion. Others proposed multinational diffusion model and it stressed interactive effect on diffusion among several countries. We add a spatial factor in the Bass model as a third communication factor. Because of situation where we can not control the interaction between markets, we need to consider that diffusion within certain market can be influenced by diffusion in contiguous market. The process that certain type of retail extends is a result that particular market can be described by the retail life cycle. Diffusion of retail has pattern following three phases of spatial diffusion: adoption of innovation happens in near the diffusion center first, spreads to the vicinity of the diffusing center and then adoption of innovation is completed in peripheral areas in saturation stage. So we expect spatial effect to be important to describe diffusion of domestic discount store. We define a spatial diffusion model using multinational diffusion model and apply it to the diffusion of discount store. Modeling: In this paper, we define a spatial diffusion model and apply it to the diffusion of discount store. To define a spatial diffusion model, we expand learning model(Kumar and Krishnan 2002) and separate diffusion process in diffusion center(market A) from diffusion process in the vicinity of the diffusing center(market B). The proposed spatial diffusion model is shown in equation (1a) and (1b). Equation (1a) is the diffusion process in diffusion center and equation (1b) is one in the vicinity of the diffusing center. $$\array{{S_{i,t}=(p_i+q_i{\frac{Y_{i,t-1}}{m_i}})(m_i-Y_{i,t-1})\;i{\in}\{1,{\cdots},I\}\;(1a)}\\{S_{j,t}=(p_j+q_j{\frac{Y_{j,t-1}}{m_i}}+{\sum\limits_{i=1}^I}{\gamma}_{ij}{\frac{Y_{i,t-1}}{m_i}})(m_j-Y_{j,t-1})\;i{\in}\{1,{\cdots},I\},\;j{\in}\{I+1,{\cdots},I+J\}\;(1b)}}$$ We rise two research questions. (1) The proposed spatial diffusion model is more effective than the Bass model to describe the diffusion of discount stores. (2) The more similar retail environment of diffusing center with that of the vicinity of the contiguous market is, the larger spatial effect of diffusing center on diffusion of the vicinity of the contiguous market is. To examine above two questions, we adopt the Bass model to estimate diffusion of discount store first. Next spatial diffusion model where spatial factor is added to the Bass model is used to estimate it. Finally by comparing Bass model with spatial diffusion model, we try to find out which model describes diffusion of discount store better. In addition, we investigate the relationship between similarity of retail environment(conceptual distance) and spatial factor impact with correlation analysis. Result and Implication: We suggest spatial diffusion model to describe diffusion of discount stores. To examine the proposed spatial diffusion model, 347 domestic discount stores are used and we divide nation into 5 districts, Seoul-Gyeongin(SG), Busan-Gyeongnam(BG), Daegu-Gyeongbuk(DG), Gwan- gju-Jeonla(GJ), Daejeon-Chungcheong(DC), and the result is shown

    . In a result of the Bass model(I), the estimates of innovation coefficient(p) and imitation coefficient(q) are 0.017 and 0.323 respectively. While the estimate of market potential is 384. A result of the Bass model(II) for each district shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. A result of the Bass model(II) shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. In a result of spatial diffusion model(IV), we can notice the changes between coefficients of the bass model and those of the spatial diffusion model. Except for GJ, the estimates of innovation and imitation coefficients in Model IV are lower than those in Model II. The changes of innovation and imitation coefficients are reflected to spatial coefficient(${\gamma}$). From spatial coefficient(${\gamma}$) we can infer that when the diffusion in the vicinity of the diffusing center occurs, the diffusion is influenced by one in the diffusing center. The difference between the Bass model(II) and the spatial diffusion model(IV) is statistically significant with the ${\chi}^2$-distributed likelihood ratio statistic is 16.598(p=0.0023). Which implies that the spatial diffusion model is more effective than the Bass model to describe diffusion of discount stores. So the research question (1) is supported. In addition, we found that there are statistically significant relationship between similarity of retail environment and spatial effect by using correlation analysis. So the research question (2) is also supported.

  • PDF
  • A Study on Jeong Su-yeong's Handscroll of a Sightseeing Trip to the Hangang and Imjingang Rivers through the Lens of Boating and Mountain Outings (선유(船遊)와 유산(遊山)으로 본 정수영(鄭遂榮)의 《한임강유람도권》 고찰)

    • Hahn, Sangyun
      • MISULJARYO - National Museum of Korea Art Journal
      • /
      • v.96
      • /
      • pp.89-122
      • /
      • 2019
    • In this paper, I argue that the Handscroll of a Sightseeing Trip to the Hangang and Imjingang Rivers by Jeong Su-yeong (1743~1831, pseudonym: Jiwujae) is a record of his private journeys to several places on the outskirts of Hanyang (present-day Seoul) and that it successfully embodies the painter's subjective perspective while boating on these rivers and going on outings to nearby mountains. Around 1796, Jeong Su-yeong traveled to different places and documented his travels in this 16-meter-long handscroll. Several leaves of paper, each of which depicts a separate landscape, are pieced together to create this long handscroll. This indicates that the Handscroll of a Sightseeing Trip to the Hangang and Imjingang Rivers reflected the painter's personal subjective experiences as he went along his journey rather than simply depicts travel destinations. The Handscroll of a Sightseeing Trip to the Hangang and Imjingang Rivers features two types of travel: boating and mountain outings on foot. Traveling by boat takes up a large portion of the handscroll, which illustrates the channels of the Hangang and Imjingang Rivers. Mountain outings correspond to the sections describing the regions around Bukhansan, Gwanaksan, and Dobongsan Mountains. Jeong Su-yeong traveled to this wide span of places not just once, but several times. The fact that the Hangang River system are not presented in accordance with their actual locations shows that they were illustrated at different points. After visiting the riversides of the Hangang and Namhangang Rivers twice, Jeong Su-yeong delineated them in fourteen scenes. Among them, the first eight illustrate Jeong's initial trip by boat, while the other six scenes are vistas from his second trip. These fourteen scenes occupy half of this handscroll, indicating that the regions near the Hangang River are painted most frequently. The scenes of Jeong Su-yeong's first boating trip to the system of the Hangang River portray the landscapes that he personally witnessed rather than famous scenes. Some of the eight scenic views of Yeoju, including Yongmunsan Mountain, Cheongsimru Pavilion, and Silleuksa Temple, are included in this handscroll. However, Jeong noted spots that were not often painted and depicted them using an eye-level perspective uncommon for illustrating famous scenic locations. The scenes of Jeong's second boating trip include his friend's villa and a meeting with companions. Moreover, Cheongsimru Pavilion and Silleuksa Temple, which are depicted in the first boating trip, are illustrated again from different perspectives and in unique compositions. Jeong Su-yeong examined the same locations several times from different angles. A sense of realism is demonstrated in the scenes of Jeong's first and second boating trips to the channels of the Hangang River, which depict actual roads. Furthermore, viewers can easily follow the level gaze of Jeong from the boat. The scenes depicting the Imjingang River begin from spots near the Yeongpyeongcheon and Hantangang Rivers and end with places along the waterways of the Imjingang River. Here, diverse perspectives were applied, which is characteristic of Imjingang River scenes. Jeong Su-yeong employed a bird's-eye perspective to illustrate the flow of a waterway starting from the Yeongpyeongcheon River. He also used an eye-level perspective to highlight the rocks of Baegundam Pool. Thus, depending on what he wished to emphasize, Jeong applied different perspectives. Hwajeogyeon Pond located by the Hantangang River is illustrated from a bird's-eye perspective to present a panoramic view of the surroundings and rocks. Similarly, the scenery around Uhwajeong Pavilion by the Imjingang River are depicted from the same perspective. A worm's-eye view was selected for Samseongdae Cliff in Tosangun in the upper regions of the Imjingang River and for Nakhwaam Rock. The scenes of Jeong Su-yeong's mountain outings include pavilions and small temple mainly. In the case of Jaeganjeong Pavilion on Bukhansan Mountain, its actual location remains unidentified since the pavilion did not lead to the route of the boating trip to the system of the Hangang River and was separately depicted from other trips to the mountains. I speculate that Jaeganjeong Pavilion refers to a pavilion either in one of the nine valleys in Wooyi-dong at the foot of Bukhansan Mountain or in Songajang Villa. Since these two pavilions are situated in the valleys of Bukhansan Mountain, their descriptions in written texts are similar. As for Gwanaksan Mountain, Chwihyangjeong and Ilganjeong Pavilions as well as Geomjisan Mountain in the Bukhansan Mountain range are depicted. Ilganjeong Pavilion was a well-known site on Gwanaksan that belonged to Shin Wi. In this handscroll, however, Jeong Su-yeong recorded objective geographic information on the pavilion rather than relating it to Shin Wi. "Chwihyangjeong Pavilion" is presented within the walls, while "Geomjisan Mountain" is illustrated outside the walls. Handscroll of a Sightseeing Trip to the Hangang and Imjingang Rivers also includes two small temples, Mangwolam and Okcheonam, on Dobongsan Mountain. The actual locations of these are unknown today. Nevertheless, Gungojip (Anthology of Gungo) by Yim Cheonsang relates that they were sited on Dobongsan Mountain. Compared to other painters who stressed Dobong Seowon (a private Confucian academy) and Manjangbong Peak when depicting Dobongsan Mountain, Jeong Su-yeong highlighted these two small temples. Jeong placed Yeongsanjeon Hall and Cheonbong Stele in "Mangwolam small temple" and Daeungjeon Hall in front of "Okcheonam small temple." In addition to the buildings of the small temple, Jeong drew the peaks of Dobongsan Mountain without inscribing their names, which indicates that he intended the Dobongsan peaks as a background for the scenery. The Handscroll of a Sightseeing Trip to the Hangang and Imjingang Rivers is of great significance in that it embodies Jeong Su-yeong's personal perceptions of scenic spots on the outskirts of Hanyang and records his trips to these places.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.