• Title/Summary/Keyword: 경량 기포 콘크리트

Search Result 159, Processing Time 0.025 seconds

An Experimental Study on Properties of Light-Weight Foamed Concrete Using the Waste Concrete Powder (폐콘크리트 미분을 사용한 경량기포콘크리트의 특성에 관한 실험적 연구)

  • Choi, Hun-Gug;Kim, Jae-Won;Seo, Jung-Pil;Lee, Jung-Goo;Kang, Cheol;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.75-78
    • /
    • 2007
  • The recycling program about waste concrete is being progressed to national research. But research on waste concrete powder which is occurred in control process of concrete powder is not enough. Waste concrete powder includes in $SiO_2,\;Al_2O_3$, and CaO so that the create of tobermorite is possibile through Hydrothermal Syntesis Reaction. Tobermorite have an advantage of high strength, sulphuric acid resistance and the lower drying shrinkage. Accordingly, this study investigate in properties of light-weight foamed concrete made with waste concrete powder. As a results, light-weight foamed concrete made with waste concrete powder is the higher than stone powder sludge of density and porosity, and the tower compressive strength. Therefore, it is thought that light-weight foamed concrete using waste concrete powder is possible.

  • PDF

An Experimental Study on the Properties of Lightweight Foamed Concrete According to the Replacement Ratio and Particle Size of Waste Concrete Powder (폐콘크리트 미분말 대체율 변화와 입도 변화에 따른 경량기포콘크리트의 특성에 관한 실험적 연구)

  • Lee, Dae Geun;Han, Sang Il;Park, Hyo Jin;Kang, Cheol;Kang, Ki Woong;Kim, Jin Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.121-125
    • /
    • 2009
  • The recycling of waste concrete is increasing for the environment protection and the shortage of aggregate according to the large scale construction project in Korea. The more manufacturing high quality recycled aggregate is produced, the more waste concrete powder generated from the manufacture process of recycled aggregate, and the consideration about the recycling of waste concrete powder is need. Waste concrete powder was used for the partial replacement of silica powder, which is a main raw material for the manufacture of autoclave foamed concrete. According to the results of research, the slurry density, flow, compressive strength mainly depend on the replacement ratio of particle size and waste concrete powder. At the SEM analysis, the more high-waste concrete powder was the less there are generated tobermorite. But we conclude that it is possible to replace WCP as silica source in the manufacture of the lightweight foamed concrete.

  • PDF

Properties of Lightweight Foamed Concrete According to Animality Protein Foaming Agent Type (동물성 기포제 종류별 경량기포 콘크리트의 특성)

  • Lim, Jeong-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.34-35
    • /
    • 2019
  • In recent years, the construction industry has also applied the dry method that can be assembled in the field by industrialization and factory production, which is free from climatic effects and can reduce the cost due to mass production and simplify the work in the field. Among the building materials used in this dry method, ALC products are made by mixing calcium oxide, gypsum, cement, and water in silica and putting them in an autoclave to create voids in the interior through steam curing at high temperature and pressure. But it requires curing cycle conditions of warming, isothermal, and temperature curing. It depends on the performance of the product depending on the curing conditions, the economical efficiency due to high oil prices, the emission of greenhouse gases by the use of fossil fuels. Experiments were conducted to select an appropriate animal protein foam for lightweight foamed concrete block which was cured by applying a prefilling method to replace existing ALC products. As a result of investigating the characteristics of lightweight foamed concrete by type of animal protein foam, it is considered that FP3 is most suitable for manufacturing lightweight foamed concrete block.

  • PDF

Study on physical performance of lightweight foam concrete using oyster shells according to unit cement content (굴 패각을 사용한 경량기포 콘크리트의 단위시멘트량에 따른 물리적 성능에 관한 연구)

  • Hong, Snag-hun;Shin, Joung-Hyeon;Shin, Dong-uk;Kim, Bong-Joo;Jung, Ui-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.102-103
    • /
    • 2020
  • Research for heat insulation of buildings is being carried out, in which a heat exchange barrier is used around the openings and balcony parts as a method for heat exchange blocks. However, the preparation for a fire is inadequate. In order to improve the EPS used as a heat exchange barrier in an attempt to solve this, there is a study on lightweight foamed concrete, but as the amount of EPS used for strengthening fire resistance increases, it becomes lower. There is no strength applied to buildings, and also. There is a limit to the amount of EPS used. In the study, we use oyster shells to secure the EPS replacement rate limit of lightweight Foamed concrete, and try to measure the change of physical properties depending on the unit cement content.

  • PDF

Properties of No-coarse Lightweight Concrete Using Synthetic Lightweight Fine Aggregate (인공경량세골재(人工輕量細骨材)를 사용(使用)한 무조골재(無粗骨材) 경량(輕量)콘크리트의 특성(特性))

  • Min, Jeong Ki;Kim, Seong Wan;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.194-206
    • /
    • 1997
  • This paper was performed to evaluate the properties of no-coarse lightweight concrete using perlite and expanded polystyrene bead on fine aggregate. The results were shown that w/c and unit weight was affected by absorption ratio and unit weight of using aggregate itself. The compressive strength of no-coarse lightweight concrete was showed $187kgf/cm^2$ by using natural sand, $170kgf/cm^2$ by using perlite. Tensile and bending strength were showed the same tendency of compressive strength, but when expanded polystyrene bead concrete dose not have strength nearly. The pulse velocity and static modulus of elasticity of no-coarse lightweight concrete were smaller than that of normal cement concrete. And stress-strain curves were shown that was increased with increase of stress, and when the stress-strain curve using expanded polystyrene bead was repeated at short intervals increase and decrease irregularly.

  • PDF

Behavior characteristics of Light-Weight Pavement Using Centrifuge Test (원심모형실험을 이용한 경량포장체의 거동특성)

  • Kim, Seong-Kyum;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5176-5183
    • /
    • 2013
  • In general, Korean Lightweight Concrete used Heat insulating material for building and filler for civil construction, backfill material for tunnel, office floor fillers, lightweight blocks and so on. These expand the range of use ALC(autoclaved lightweight concrete) on the soft-ground at regular intervals during road construction by installing piles used as substrates for the process is under study. In this study, behavior characteristics on the soft-ground of pavement analysis was used to test the geo-Centrifuge. Prototype pavement reduced to 1/30 slab form of the composition as kaolinite model tests were conducted in the soft ground. Pile Arrangement (having 36 component pile with an array of $3{\times}12$) was used to group of piles. Tests of gravity 30 level the centrifugal force acting Light-weight pavement models. Based on the Prototype pavement of the behavior characteristics of pavement behavior characteristics were estimated. FMA analysis of the 10 times as big 39.4kg (actual load 35 ton) of the lateral load is applied to the case 7.8mm (actual behavior 23.4mm) behavior was fine.

Physical Properties of Lightweight Foamed Concrete with Flame Resistant EPS Waste (난연성 EPS 폐기물을 혼입한 경량기포 콘크리트의 물리적 특성)

  • Eo, Seok-Hong;Son, Ji-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.226-234
    • /
    • 2017
  • The physical properties of lightweight foamed concrete mixed with EPS waste and flame resistant EPS waste were investigated. For this purpose, the main variables considered were a cement content of 300 and $400kgf/m^3$ and an EPS replacement ratio of 0, 10, 20, 30, and 40% by the volume ratio of the foam. The water-cement ratio and the dilution concentration were fixed to 0.5 and 10% respectively. The test results showed that the apparent density meets degrees 0.5 and 0.6 of KS F4039, and they showed little difference between the two mixes of Type A and Type B, regardless of the unit cement content. The bending strength obtained through the compressive strength also met the degree of KS F 4039. The thermal conductivity was 1~3% higher for the mixes of EPS than the case of flame resistant EPS, but both mixes met the 0.4 degree of KS F4039. The absorption ratio showed the values above 20% with a 1~3% difference for the two mixes, which mean further studies will be needed to reduce the absorption ratio.