• Title/Summary/Keyword: 경량구조물

Search Result 279, Processing Time 0.023 seconds

Prediction of Fracture Strength of Woven CFRP Laminates According to Fiber Orientation (평직 CFRP 적층복합재료의 섬유배열각도에 따른 파괴강도 예측)

  • Kang, Min-Sung;Park, Hong-Sun;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.881-887
    • /
    • 2012
  • CFRP composite materials have been widely used in various fields of engineering because of their excellent properties. They show high specific stiffness and specific strength compared with metallic materiasl. Woven CFRP composite materials are fabricated from carbon fibers with two orientation angles ($0^{\circ}/90^{\circ}$), which influences the mechanical properties. Therefore, woven CFRP composite materials show different types of fracture behavior according to the load direction. Therefore, the fracture behavior of these materials needs to be evaluated according to the load direction when designing structures using these materials. In this study, we evaluate the fracture strength of plain-woven CFRP composite materials according to the load direction. We performed tests for six different angles (load direction: $0^{\circ}/90^{\circ}$, $30^{\circ}/-60^{\circ}$, $+45^{\circ}/-45^{\circ}$) and estimated the fracture strength for an arbitrary fiber angle by using the modified Tan's theory and harmonic function.

Experimental Study on the Flash Over Delay Effects according to the Prevention of Flame Spread between Composite Material Panels (복합자재의 패널 간 화염확산방지에 따른 플래시오버 지연 효과에 대한 실험적 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • A sandwich panel is a composite material composed of a double-sided noncombustible material and insulation core which is used in the inner, outer walls, and roof structure of a building. Despite its excellent insulation performance, light weight and excellent constructability, a flame is brought into the inside of the panel through the joint between the panels, melting the core easily and causing casualties and property damage due to the rapid spread of flame. The current Building Law provides that the combustion performance of finishing materials for buildings should be determined using a fire test on a small amount of specimen and only a product that passes the stipulated performance standard should be used. This law also provides that in the case of finishing materials used for the outer walls of buildings, only materials that secured noncombustible or quasi-noncombustible performance should be used or flame spread prevention (FSP) should be installed. The purpose of this study was to confirm the difference between the dangers of horizontal and vertical fire spread by applying FSP, which is applied to finishing materials used for the outer walls of buildings limitedly to a sandwich panel building. Therefore, the combustion behavior and effects on the sandwich panel according to the application of FSP were measured through the construction to block the spread of flame between the panels using a full scale fire according to the test method specified in ISO 13784-1 and a metallic structure. The construction of FSP on the joint between the panels delayed the spread of flame inside the panels and the flash over time was also delayed, indicating that it could become an important factor for securing the fire safety of a building constructed using complex materials.

Actuation Performance of LIPCA and bare PZT at Active Vibration Control of a Cantilever Beam (압전 복합재료 작동기 LIPCA와 단일 PZT의 보 진동 제어 성능 비교)

  • ;Gu, Nam-Seo;Park, Hun-Cheol;Lee, Yeong-Jae;Yun, Gwang-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.60-66
    • /
    • 2006
  • The purpose of this paper is to evaluate potential application of Lightweight Piezo-composite Actuator (LIPCA) to suppress vibrations of structures. The LIPCA, consisting of a piezoelectric layer, a carbon/epoxy layer and glass/epoxy layers, has advantages in terms of high performance, durability and reliability, compared to the bare piezoelectric ceramic (PZT) actuator. We performed two kinds of experiments on static actuation and active vibration suppression to investigate the actuation performances of the LIPCA and the bare PZT. We attached the actuator on one side and a strain gage on the other side of an aluminum beam. In the static actuation test, we evaluated the performance by comparing equivalent actuation moments of the LIPCA and the bare PZT due to the applied voltage. In the active vibration control test, control signals were generated to suppress the vibration of the beam by the PID control algorithm based on the measured strain signals. The performances were estimated based on settling times of the strain responses. It can be concluded that the LIPCA has better actuation performances than the bare PZT in active control of free vibration as well as static actuation.

이온빔을 이용한 Prepreg의 표면처리가 탄소섬유/에폭시 복합재의 파괴특성에 미치는 영향

  • 이경엽;신동혁
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.17-17
    • /
    • 2000
  • 탄소섬유/에폭시 적충복합재는 경량성 및 비강도, 비강성이 우수해 최근 들어 항공기, 자동차, 우주선 등에 대한 적용이 급속도로 증가하고 있다. 그러나 적충복합재 구조물에 있어 최대 약점 중 하나는 적충된 면이 서로 떨어지는 충간분리가 발생 할 수 있다는 것이다. 본 논문에서는 탄소섬유/에폭시 적충복합재의 파괴특성을 향상시키기 위해 프리프레그 (prepreg)를 이온빔으로 표면처리하는 방법에 대해 연구하였다. 즉 프리프레그를 $Ar^+$ 이온도 움반응법에 의해 표면처리 하였으며 이를 적용, 열림모드 파괴특성을 검토하였다. 즉 표준 프리프레그와 표면처리 된 프리프레그를 이용 $0^{\circ}$ 단일방향 DCB(Double Cantilever Beam) 시편을 제작하였으며, 각각의 경우에 대하여 파괴시험을 수행하였다. 파괴시험으로부터 파괴 저항곡선(R-곡선)을 결정하여 이를 비교 검토함으로서 프리프레그의 표면처리가 파괴특성에 미치는 영향을 해석하였다. 본 연구를 통해 얻어진 결과를 요약하면 다음과 같다. 첫째, 층간분리 길이가 동일한 경우 표면처리한 경우의 컴플라이언스가 표면처리 하지 않은 경우에 비해 작게 나타남을 알 수 있었다. 둘째, 파괴하중 값은 컴플라이언스와 반대현상을 나타낸다. 즉 표면처리한 경우의 파괴하중 이 표면처리 하지 않은 경우에 비해 크게 나타남을 알 수 있었다. 셋째, 표면처리 한 시편의 경우 R-곡선이 향상됨을 알 수 있었다. 즉 표면처리 한 경우의 열림모드 파괴이성, $G_{Ic}$ 값은 표준 시편의 값보다 24% 높았다. 이는 프리프레그의 표면처리 가 충과 충간의 접착강도를 증가시키고 또한 탄소섬유와 에폭시 간의 계면력을 증가시킨데 기인하는 것으로 사려된다.되었으며, duty-on 시간의 증가에 따라 $Cr_2N$ 상의 형성이 점점 많아져 80% duty-on 시간 경우에는 거의 CrN과 $Cr_2N$ 상이 공존하는 것으로 나타났다. 또한 duty-on 시간이 증가할수록 회절피크의 세기가 증가하여 결정화가 더 많이 진행되어짐을 알 수 있었다. 마찬가지로 바이어스 펄스이 주파수에 다른 결정성의 변화도 펄스의 주파수가 증가할수록 박막이 결정성이 좋아지고 $Cr_2N$ 상이 쉽게 형성되었다. 증착 진공도에 따른 결정성은 상대적으로 질소의 농도가 높은 낮은 진공도에서는 CrN 상이 주로 형성되었으며, 반대로 높은 진공도에서는 $Cr_2N$ 상이 많이 만들어졌다. 즉 $1.3{\times}10^{-2}Torr$의 증착 진공도에서는 CrN 상만이 보이는 반면 $9.0{\tiems}1-^{-2}Torr$ 진공도에서부터 $Cr_2N$ 상이 형성되기 시작하여 $5.0{\tiems}10^{-2}Torr$ 진공도에서는 두개의 상이 혼재되어 있음을 알 수 있었다. 박막의 내마모성을 조사한 결과 CrN 박막의 마찰 계수는 초기에 급격하게 증가한 후 0.5에서 0.6 사이의 값으로 큰 변화를 보이지 않았으며, $Cr_2N$ 박막도 비슷한 거동을 보였다.차 이, 목적의 차이, 그리고 환경의 의미의 차이에 따라 경관의 미학적 평가가 달라진 것으로 나타났다.corner$적 의도에 의한 경관구성의 일면을 확인할수 있지만 엄밀히 생각하여 보면 이러한 예의 경우도 최락의 총체적인 외형은 마찬가지로 $\ulcorner$순응$\lr

  • PDF

A Comparative Study on Power Tool Manufacturers' Products Spec. and Design Development Features - By the Case Study on BOSCH, BLACK&DECKER and KEYANG Electrics- (전동공구 회사의 제품사양별 디자인개발특성 비교연구 -보슈(BOSCH), 블랙앤데커(BLACK&DECKER), 계양전기 사례를 중심으로 -)

  • 채승진
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.383-392
    • /
    • 2004
  • The power tools is the product using working power generated by electric motor. Many companies are manufacturing numerous devices. Main features of tools are included various assembled products, small, light and solid and durable enough to match several standards. Fundamental requirements for the product is excellent performance and convenience for use. The quality of them depends on the equipped motor'(s) capability, accuracy of gear and endurance against worn-out. By adapting the state-of-the-art parts, they could be used in the place from home to heavy industry broadly. They can be classified electronic drills, grinders, saws and sanders families for the household appliances. For industrial tools, bore drill, grinder, polisher, and driver drill are classified as special and high priced group. This study presents the strategy of power tool development of BOSCH, BLACK&DECKER and KEYANG. Their products were analyzed in terms of product line and product mix concept. Then they are examined by design elements, such as color, shape and material for housing. As an analysis method, the image scale parameter and criteria were applied to each company's product.

  • PDF

Development of an Open-Typed Optimal Trolley Model for Cable-Based Retractable Membrane Roof (케이블 기반 개폐 막 지붕의 오픈형 최적 트롤리 모델 개발)

  • Lee, Donwoo;Shon, Sudeok;Choi, Bongyoung;Lee, Seungjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.719-727
    • /
    • 2021
  • In the field of architecture, retractable devices capable of responding flexibly to the environment have been applied widely to large structures. Among these devices, the aesthetically pleasing retractable membrane is lightweight so that the membrane can be opened easily using only a traction device. On the other hand, because the towed membrane moves as it is connected to the main cable by a trolley, the number of trolleys needed increases in proportion to the roof's area. This study proposes an optimal model for an open-type trolley (OTT), which is used widely in these devices, using topology optimization. The analysis used the ANSYS program. A new model was proposed based on the results and reviewed through the feedback. Through this process, it was possible to develop a prototype with increased durability and reduced weight. For OTT, optimization was performed based on static analysis and the boundary conditions, so three prototypes were designed. A comparison of the proposed trolley with the conventional one under the same conditions revealed an up to 71.04% decrease in volume while the yield-strength reached 8.67 to 11.43%. In conclusion, the optimal trolley proposed was found to be reliable in terms of economy and stability.

Development of a Silicon Carbide Large-aperture Optical Telescope for a Satellite (SiC를 이용한 대구경 위성용 망원경 제작)

  • Bae, Jong In;Lee, Haeng Bok;Kim, Jeong Won;Lee, Kyung Mook;Kim, Myung-Whun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.2
    • /
    • pp.74-83
    • /
    • 2022
  • The entire process, from the raw material to the final system qualification test, has been developed to fabricate a large-diameter, lightweight reflective-telescope system for a satellite observation. The telescope with 3 anastigmatic mirrors has an aperture of 700 mm and a total mass of 66 kg. We baked a silicon carbide substrate body from a carbon preform using a reaction sintering method, and tested the structural and chemical properties, surface conditions, and crystal structure of the body. We developed the polishing and coating methods considering the mechanical and chemical properties of the silicon carbide (SiC) body, and we utilized a chemical-vapor-deposition method to deposit a dense SiC thin film more than 170 ㎛ thick on the mirror's surface, to preserve a highly reflective surface with excellent optical performance. After we made the SiC mirrors, we measured the wave-front error for various optical fields by assembling and aligning three mirrors and support structures. We conducted major space-environment tests for the components and final assembly by temperature-cycling tests and vibration-shock tests, in accordance with the qualifications for the space and launch environment. We confirmed that the final telescope achieves all of the target performance criteria.

Optimal Design of Overtopping Wave Energy Converter Substructure based on Smoothed Particle Hydrodynamics and Structural Analysis (SPH 및 구조해석에 기반한 월파수류형 파력발전기 하부구조물 최적 설계)

  • Sung-Hwan An;Jong-Hyun Lee;Geun-Gon Kim;Dong-hoon Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.992-1001
    • /
    • 2023
  • OWEC (Overtopping Wave Energy Converter) is a wave power generation system using the wave overtopping. The performance and safety of the OWEC are affected by wave characteristics, such as wave height, period. To mitigate this issue, optimal OWEC designs based on wave characteristics must be investigated. In this study, the environmental conditions along the Ulleungdo coast were used. The hydraulic efficiency of the OWEC was calculated using SPH (Smoothed Particle Hydrodynamics) by comparing 4 models that changed the substructure. As a result, it was possible to change the substructure. Through design optimization, a new truss-type structure, which is a substructure capable of carrying the design load, was proposed. Through a case study using member diameter and thickness as design variables, structural safety was secured under allowable stress conditions. Considering wave load, the natural frequency of the proposed structure was compared with the wave period of the relevant sea area. Harmonic response analysis was performed using wave with a 1-year return period as the load. The proposed substructure had a reduced response magnitude at the same exciting force, and achieved weight reduction of more than 32%.

Evaluation of Bonding Performance of Hybrid Materials According to Laser and Plasma Surface Treatment (레이저 및 플라즈마 표면처리에 따른 이종소재 접합특성평가)

  • Minha Shin;Eun Sung Kim;Seong-Jong Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.441-447
    • /
    • 2023
  • Recently, as demand for high-strength, lightweight materials has increased, there has been great interest in joining with metals. In the case of mechanical bonding, such as bolting and riveting, chemical bonding using adhesives is attracting attention as stress concentration, cracks, and peeling occur. In this paper, surface treatment was performed to improve the adhesive strength, and the change in adhesive strength was analyzed. For the adhesive strength test were conducted with Carbon Fiber Reinforced Plastic(CFRP), CR340(Steel), and Al6061(Aluminum), and laser and plasma surface treatment were used. After plasma surface treatment, the adhesive strength improved by 7.3% and 39.2% in CFRP-CR340 and CFRP-Al6061, respectively. CR340-Al6061 was improved by 56.2% in laser surface treatment. Surface free energy(SFE) was measured by contact angle after plasma treatment, and it is thought that the adhesion strength was improved by minimizing damage through a chemical reaction mechanism. For laser surface treatment, it is thought that creates a rough bonding surface and improves adhesive strength due to the mechanical interlocking effect. Therefore, surface treatment is effect to improve adhesive strength, and based on this paper, the long-term fatigue test will be conducted to prevent fatigue failure, which is a representative cause of actual structural damage.