• Title/Summary/Keyword: 경랑

Search Result 7, Processing Time 0.026 seconds

엘리베이터 폴을 적용하여 점검이 용이한 등부표

  • 김정완;진성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.38-39
    • /
    • 2023
  • 기존 등부표, 등명기 점검 시 사다리를 타고 상단에 올라가서 등명기를 점검하며, 너울성 파도 등으로 인하여 등부표가 기울어질 경우 추락사고가 발생할 수 있어 이를 예방하기 위해 엘리베이터 폴을 적용하여 등명기를 표체까지 하강시켜 안전하고 용이하게 점검할 수 있는 시스템 개발에 관한 것이다. 또한, 강철로 제작하는 표체를 탄소섬유로 제작하여 경량화하고 침추 무게, 투입 해상장비의 규모를 줄여 공사비를 절감하는 기대효과를 가질 수 있다.

  • PDF

Electric Field Distribution and AC Dielectric Breakdown Properties according to Needle Electrode in EHV Insulators of XLPE (초고압 절연체 XLPE의 침전극에 따른 전계분포와 AC 절연파괴특성)

  • An, Byung-Chul;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.136-139
    • /
    • 2006
  • 최근 전력수요의 급증과 더불어 기기의 소형화와 경랑화를 위해 고분자절연재료의 사용이 증가하였으며, 근래 들어 환경성의 문제가 거론되면서 반영구적인 절연재료의 요구가 급증하였다. 그로 인하여 초고압 케이블의 절연재료로서 가교폴리에틸렌이 사용되어지고 있다. 이에 본 논문에서는 초고압전력용 케이블에서 절연재료로 사용되고 있는 가교폴리에틸렌 (XLPE) 내부전계분포 및 파괴전압과의 상관관계를 알아보기 위해 케이블에 칩 전극을 삽입하여 두께를 0.5, 1, l.5 [mm] 변화시켜 파괴전계를 검출하였으며, 또한 와이블 해석을 통한 파괴전압의 척도파라미터룰 검출하여, 시뮬레이션 인가전압으로 사용하였다. 시뮬레이션 경계요소법 (BEM)을 이용한 3 차원 전계해석 프로그램으로 조사하였다.

  • PDF

Shear Resistance of Light-gauge Steel Stud Wall infilled with light-weight foamed mortar (경량기포모르터와 합성한 경량형강 벽체의 전단 저항)

  • Lee, Sang Sup;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.397-406
    • /
    • 2004
  • This paper presents the test and evaluation results on the shear strength and stiffness of a light steel stud wall from a lightweight foamed mortar (lightweight hybrid wall). The use of a lightweight foamed mortar was aimed at improving structural performance, thermal performance, and finish. Studiesshowed that it did not affect thermal performance, but it contributed to structural performance and finish when the unit weight was more than 0.8 (Editor's note: Please indicate the unit of measurement.). In this study, 14 specimens-whose parameters included the specific gravity of the lightweight foamed mortar (0.6, 0.8, 1.0, 1.2), the spacing of the stud (450 mm, 600 mm, or 900 mm), finishing materials (such as lightweight foamed mortar, OSB, and gypsum board), and bracing-were manufactured. Three typical, steel house-framing specimens were added to compare the test results with the 14 specimens. The results of in-plane shear tests show that the use of lightweight foamed mortar (1.15~5.38 times stronger, 1.45~13.7 times stiffer) results in ultimate strength and initial stiffness. In addition, it was possible to widen the stud spacing to up to 900 mm without decreasing shear strength. It was very important to prevent the lightweight foamed mortar from shrinking and to secure the adhesion between the steel stud and the lightweight foamed mortar to improve structural performance.

Effect of Water on the Lightweight Air-Mixed Soil Containing Silt Used for Road Embankment (도로성토체로 사용된 실트질 계열의 경랑기포혼합토에 대한 물의 영향)

  • Hwang, Joong-Ho;Ahn, Young-Kyun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.23-32
    • /
    • 2010
  • This study was especially conducted to find out the characteristics of the lightweight air-mixed soil (slurry density 10 kN/$m^3$) containing silt related to water. Compression strength, permeability, and capillary height of the lightweight air-mixed soil were studied, and also to support these studies, the structure of that soil was analyzed in detail. Air bubbles of various sizes are inside the lightweight air-mixed soil, and its distribution in a location is almost constant. A numerous tiny pores are inside the air bubbles so that the lightweight air-mixed soil can be saturated with water. Porosity is also estimated through the image analysis. Peak strength of the lightweight air-mixed soil is not dependent on water, but behavior of stress-strain is affected by the water. Permeability is about $4.857{\times}10^{-6}cm/sec$, which is a little bit higher than the clay's permeability. Capillary rise occurs rapidly at the beginning of the test until the lapse of 100 minutes and then its increase rate becomes slow. The capillary rise causes the increase of the density of the lightweight air-mixed soil, and thus it is required to pay attention to this phenomenon during structure design and maintenance of the lightweight air-mixed soil.

Characteristics of the Expanded Road Embankment Constructed by Lightweight Air-Mixed Soils for a Short-Term (경랑기포혼합토로 단기간에 시공된 확폭도로성토체의 특성)

  • Hwang, Joong Ho;Ahn, Young Kyun;Lee, Young-Jun;Kim, Tae-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.377-386
    • /
    • 2010
  • This study was conducted to find out the characteristics of the expanded road embankment constructed by the lightweight air-mixed soil (slurry density $10kN/m^3$) for a short-term without any ground improvement. Compression strength, capillary rise height of the lightweight air-mixed soil and settlement behavior of soft ground were studied. Compression strengths of the specimens sampled at the site after 1 and 5 months of construction were all satisfied the required strength 500 kPa. However, it was not convinced the homogeneity construction, because the values of strength were depending on the sampled location. Also, strength difference between laboratory and site specimens were found about 19%, and thus it should be considered for mixing design. Capillary rise reached about 20 cm for 70 hours because of a numerous tiny pores existed inside the lightweight air-mixed soil. Relationship between settlement and time of the soft ground placed underneath the expanded embankment was estimated by using the measured data and back analysis technique. The current average consolidation ratio and the final settlement after 120 months later were estimated about 32% and 4.5cm, respectively. This settlement is much less value than the allowable settlement 10cm for this structure.