• Title/Summary/Keyword: 경계선 기법

Search Result 247, Processing Time 0.027 seconds

Application of IHS Transform Method for Understanding of Groundwater Resources Distribution in the Haenam area (해남지역 지하수 부존 분포 파악을 위한 IHS 변환 적용)

  • 김승태;이기원;유인걸;송무영
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.51-55
    • /
    • 2003
  • 본 연구는 조사대상지역인 전라남도 해남군 전역에 대해 현장조사된 지질 및 지하수 양수량 자료등과 같은 수리정보를 종합적으로 분석하고 이를 Landsat 영상자료과의 영상융합 과정을 통해 지하수 부존가능성에 대한 수리 지질 지표정보로 추출함으로서 지하수 특성정보를 위성영상정보와 연계하여 효과적으로 도시하고자 하였다. 현장조사시 획득된 자료는 해남지역을 11개 소유역으로 구분한 후 각 구역에 대한 2000여개 관점에서 측정된 양수량과 안정지하수위를 이용하여 산출한 비용출량 자료(groundwater specific capacity)와 각 소 유역 (unit watershed)에 대한 선구조 분석자료, 지질별 분포, 정밀고도자료를 추출하여 산출한 고도, 경사도 분포, 수계패턴과 수계밀도로서 이를 통합적으로 분석하여 해남지역에 대한 지하수 특성을 파악하고자 하였다. 위성영상자료의 처리과정은 Landsat 5 TM 영상자료는 '86. 12. 11 및 '98. 12. 28에 촬영된 WRS(World Reference System) Row-Path116-36로서, 1986년 영상은 12년 차이의 해남의 변화지역을 탐지하기 위한 영상자료로서 활용하였으며 98년 영상을 주요 분석 자료로 이용하였으며 지표 이용정보 추출은 크게 수역추출, 식생분포추출, 지표분류도, 변화탐지영역추출로 구분된다. 본 연구방법은 크게 위성영상분석을 통해 추출된 정보와 지표조사를 통해 획득된 선구조 및 지하수 정보를 Data fusion 방식으로 이용되고 있는 IHS 변환 기법을 통해 본 역에 대한 지하수 정보 및 간척지 등에 의한 지표 개발에 따른 지하수 부존 가능성을 탐색하기 위한 현황을 효과적인 자료로 표현하고자 하였다.및 스페클 잡영 제거 정도에 있어 다른 필터들과 큰 차이가 없지만 경계선보존지수는 다른 필터들에 비하여 가장 우수함을 확인할 수 있었다.rbon 탐식효율을 조사한 결과 B, D 및 E 분획에서 유의적인 효과를 나타내었다. 이상의 결과를 종합해볼 때, ${\beta}$-glucan은 고용량일 때 직접적으로 또는 $IFN-{\gamma}$ 존재시에는 저용량에서도 복강 큰 포식세로를 활성화시킬 뿐 아니라, 탐식효율도 높임으로써 면역기능을 증진 시키는 것으로 나타났고, 그 효과는 crude ${\beta}$-glucan의 추출조건에 따라 달라지는 것을 알 수 있었다.eveloped. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On th

  • PDF

A Hippocampus Segmentation in Brain MR Images using Level-Set Method (레벨 셋 방법을 이용한 뇌 MR 영상에서 해마영역 분할)

  • Lee, Young-Seung;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1075-1085
    • /
    • 2012
  • In clinical research using medical images, the image segmentation is one of the most important processes. Especially, the hippocampal atrophy is helpful for the clinical Alzheimer diagnosis as a specific marker of the progress of Alzheimer. In order to measure hippocampus volume exactly, segmentation of the hippocampus is essential. However, the hippocampus has some features like relatively low contrast, low signal-to-noise ratio, discreted boundary in MRI images, and these features make it difficult to segment hippocampus. To solve this problem, firstly, We selected region of interest from an experiment image, subtracted a original image from the negative image of the original image, enhanced contrast, and applied anisotropic diffusion filtering and gaussian filtering as preprocessing. Finally, We performed an image segmentation using two level set methods. Through a variety of approaches for the validation of proposed hippocampus segmentation method, We confirmed that our proposed method improved the rate and accuracy of the segmentation. Consequently, the proposed method is suitable for segmentation of the area which has similar features with the hippocampus. We believe that our method has great potential if successfully combined with other research findings.

Development and Validation of Inner Environment Prediction Model for Glass Greenhouse using CFD (CFD를 이용한 유리온실 내부 환경 예측 모델 개발 및 검증)

  • Jeong, In Seon;Lee, Chung Geon;Cho, La Hoon;Park, Sun Yong;Kim, Min Jun;Kim, Seok Jun;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • Because the inner environment of greenhouse has a direct impact on crop production, many studies have been performed to develop technologies for controlling the environment in the greenhouse. However, it is difficult to apply the technology developed to all greenhouses because those studies were conducted through empirical experiments in specific greenhouses. It takes a lot of time and cost to develop the models that can be applicable to all greenhouse in real situation. Therefore studies are underway to solve this problem using computer-based simulation techniques. In this study, a model was developed to predict the inner environment of glass greenhouse using CFD simulation method. The developed model was validated using primary and secondary heating experiment and daytime greenhouse inner temperature data. As a result of comparing the measured and predicted value, the mean temperature and uniformity were 2.62℃ and 2.92%p higher in the predicted value, respectively. R2 was 0.9628, confirming that the measured and the predicted values showed similar tendency. In the future, the model needs to improve by applying the shape of the greenhouse and the position of the inner heat exchanger for efficient thermal energy management of the greenhouse.

Verification of the Numerical Analysis on Caisson Quay Wall Behavior Under Seismic Loading Using Centrifuge Test (원심모형시험을 이용한 케이슨 안벽의 지진시 거동에 대한 수치해석 검증)

  • Lee, Jin-Sun;Park, Tae-Jung;Lee, Moon-Gyo;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.57-70
    • /
    • 2018
  • In this study, verification of the nonlinear effective stress analysis is performed for introducing performance based earthquake resistance design of port and harbor structures. Seismic response of gravitational caisson quay wall in numerical analysis is compared directly with dynamic centrifuge test results in prototype scale. Inside of the rigid box, model of the gravitational quay wall is placed above the saturated sand layer which can show the increase of excess pore water pressure. The model represents caisson quay wall with a height of 10 m, width of 6 m under centrifugal acceleration of 60 g. The numerical model is made in the same dimension with the prototype scale of the test in two dimensional plane strain condition. Byrne's liquefaction model is adopted together with a nonlinear constitutive model. Interface element is used for sliding and tensional separation between quay wall and the adjacent soils. Verification results show good agreement for permanent displacement of the quay wall, horizontal acceleration at quay wall and soil layer, and excess pore water pressure increment beneath the quay wall foundation.

Shallow Subsurface Structure of the Yaksoo Area, Ulsan, Korea by Geophysical Surveys (물리탐사기법에 의한 울산광역시 약수지역 천부지하구조 조사)

  • Lee, Jung-Mo;Kong, Young-Sae;Chang, Tae-Woo;Park, Dong-Hee;Kim, Tae-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.57-66
    • /
    • 2000
  • The location and geometry of the Ulsan Fault play important roles in interpreting tectonic evolution of the southeastern part of the Korean Peninsula. Dipole-dipole electrical resistivity surveys and seismic refraction surveys were carried out in the Yaksoo area, Ulsan in order to measure the thickness of the alluvium covering the Ulsan Fault and to find associated fracture zones and possibly the location of its major fault plane. The collected data were analyzed and interpreted. Some results reported previously by others were also used in this interpretation. No low resistivity anomalies were found in the cross-sectional resistivity image of the survey line located in the east of the Dong River. In contrast, well-developed continuous low resistivity anomalies were detected in the west of the Dong River. This strongly suggests that the major fault plane of the Ulsan Fault is located under or in the west part of the Dong River. Two refraction boundaries corresponding to the underground water level and the bottom of the alluvium were found by refraction surveys carried out on the limited part of the east survey line. The thickness of the alluvium was found to be about 30 m. Small faults in the basement rock identified by reflection surveys were not detected by both resistivity and refraction seismic surveys. This might be explained by assuming that low resistivity anomaly is more closely related to the clay contents than the water contents. On the other hand, it may be resulted by the limited resolution of the resistivity and refraction surveys. Detailed study is required to clarify the reason. Resistivity survey is frequently considered to be a good exploration method to detect subsurface faults. However, it appears to be less useful than reflection seismic survey in this work. In dipole-dipole resistivity survey, the number of separation should be increased to survey deeper subsurface with the same resolution. However, signal to noise ratio decreases as the number of separation increases. In this survey area, the signal to noise ratio of up to sixteen separations was good enough based on the statistical properties of measurements.

  • PDF

Protection for sea-water intrusion by geophysical prospecting & GIS (해수침투 방지를 위한 물리검층과 GIS 활용방안)

  • Han Kyu-Eon;Yi Sang-Sun;Jeong Cha-Youn
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2000.09a
    • /
    • pp.54-69
    • /
    • 2000
  • There are groundwater trouble by high-salinity yield inducing sea-water intrusion in Cheju Island. It is used groundwater-GIS(Well-lnfo) in the maintenance and management of groundwater in Cheju Island to grasp groundwater trouble area and cause of high-salinity yield. For 16 wells certain to yield high-salinity, we logged specific electrical conductivity(EC) and tried to get hold of freshwater and saltwater relationship. As result of distribution of $Cl^-$ by depth, it is showed up groundwater trouble by high-salinity yield in the east coastal area and the partly north coastal area. The reason of high-salinity groundwater yield are low-groundwater level by the structure of geology and low-hydraulic gradient etc. There is necessity for management to development and use of groundwater in the high-salinity area, special management area.

  • PDF

Analysis of Environmental Factors and Change of Vascular Plant Species along an Elevational Gradients in Baekdansa, Mt. Taebaeksan National Park (태백산국립공원 백단사코스의 고도별 관속식물상 변화와 환경요인 분석)

  • An, Ji-Hong;Park, Hwan-Joon;Lee, Sae-rom;Seo, In-Soon;Nam, Gi-Heum;Kim, Jung-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.378-401
    • /
    • 2019
  • This study generated a list of plants in eight sections from the Baekdansa ticket office (874m) to Cheonjedan (1,560m) divided in the interval of 100m above sea level to examine the species diversity patterns and distribution changes of the vascular plants at different altitudes in Taebaeksan National Park. Four site surveys found a total of 385 taxa: 89 families, 240 genera, 345 species, 5 subspecies, 34 varieties, and 1 form. A result of analyzing the change of species diversity along elevational gradients showed that it decreased with increasing elevation and then increased from a certain section. A result of analyzing habitat affinity types showed that the proportion of forest species increased with increasing elevation. On the other hand, the ruderal species appeared at a high rate in the artificial interference section. A result of comparing the proportion of woody and herb plants showed that the woody plants gradually increased with elevation and rapidly decreased in the artificial interference section. On the other hand, the herb plants showed the opposite trend. A result of analyzing the change of distribution of species according to altitude with the DCA technique showed that the vascular plants were divided into three groups according to the elevation in order on the I axis with the boundaries at 900m and 1,300m above sea level. The arrangement of each stand from right to left along the altitude on the I axis with a significant correlation with warmth index (WI) confirmed that the temperature change along the altitude could affect the distribution of vascular plants, composition, and diversity. Therefore, the continuous monitoring is necessary to confirm ecological and environmental characteristics of vegetation, distribution ranges, changes of habitat. We expect that the results of this study will be used as the basic data for establishing the measurement measures related to the preservation of biodiversity and climate change.