• Title/Summary/Keyword: 경계부재

Search Result 141, Processing Time 0.022 seconds

Evaluation of Seismic Damage for RC Bridge Piers I : Theory and Formulation (철근콘크리트 교각의 지진손상 평가 I : 이론 및 정식화)

  • 김태훈;김운학;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.31-40
    • /
    • 2002
  • The purpose of this study is to investigate the seismic behavior of RC bridge piers and to provide the data for developing improved seismic design criteria. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. n boundary plane at which each member with different thickness is connected, local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. In the companion paper, the proposed numerical method for seismic damage evaluation of RC bridge piers is verified by comparison with the reliable experimental results.

Numerical Study of Breaking Wave Forces Acting on Vertical Cylindrical Piles (鉛直 원형파일에 작용하는 碎波波力의 수치해석)

  • 심재설;전인식;이홍식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.100-108
    • /
    • 1998
  • Morison formula has been used in the determination of wave forces acting on vertical cylindrical piles of ocean structures. The formula, however, can be applied to mildly varying varying incident waves with symmetrical shapes. The breaking waves impinge on structures with very high impact forces, which completely differ from the inertia and drag forces of the Morison formula in both magnitudes and characteristics. In the present study, a boundary element method is applied to determine the water particle velocity and acceleration under the breaking waves. A numerical model is then developed to determine breaking wave forces utilizing those water particle kinematics. The results of the model is then developed to determine breaking wave forces utilizing those water particle kinematics. The results of the model agree well with existing experimental data, giving maximal wave forces 3 times and maximal moments 5 times larger than the Morison formula does.

  • PDF

Analytical Study on the Size Effect Influencing Inelastic Behavior of Reinforced Concrete Bridge Piers (철근콘크리트 교각의 비탄성 거동에 미치는 크기효과에 관한 해석적 연구)

  • 김태훈;김운학;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2002
  • The purpose of this study is to investigate the size effect on inelastic behavior of reinforced concrete bridge piers. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis for reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. To determine the size effect on bridge pier inelastic behavior, a 1/4-scale replicate model was also loaded for comparison with the full-scale bridge pier behavior.

A Study on the Elasto-Plasticity Behaviour of a Ship's Plate under Thrust According to Boundary Condition (압축력을 받는 선체판의 경계조건에 따른 탄소성거동에 관한 연구)

  • Ko Jae-Yong;Park Joo-Shin;Park Sung-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.29-33
    • /
    • 2004
  • Design of general steel structure had applied to achieve elastic designing concept so far. Because elastic design supposes that whole structure complies with elasticity formula so that achieve via allowable stress of material. It is concept that calculate stress distribution of construction about action external load and estimate load when the maximum stress reaches equally with allowable stress that is established by maximum safety load of the structure. But, absence that compose actuality structure by deal with external load increase small success surrender and structure hardness falls and structure in limited state finally on the whole as showing complicated process by interference between collapse and buckling under compression. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

Seismic Performance Evaluation of Reinforced Concrete Bridge Columns under Varying Axial Force (변동 축하중을 받는 철근콘크리트 교각의 내진성능평가)

  • 김태훈;김운학;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.67-73
    • /
    • 2003
  • The purpose of this study is to evaluate seismic performance of reinforced concrete bridge columns under varying axial force. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis for reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. The proposed numerical method for seismic performance evaluation of reinforced concrete bridge columns under varying axial force is verified by comparison with reliable experimental results.

A Case Study on the Application of Machine Guidance in Construction Field (공사 현장에서의 Machine Guidance 적용에 관한 사례연구)

  • Kim, Wanbong;Park, Sangil;Lee, Riho;Seo, Jongwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.721-731
    • /
    • 2018
  • Manpower in domestic construction sites is becoming more and more aging. Various methods have been devised to prevent productivity and quality deterioration of construction due to absence of skilled workers and difficulty in supplying manpower. Especially, many researchers study various methods such as Machine Guidance (MG) and Remote Machine Control to improve productivity and quality. Although many prior studies have been conducted since the advent of MG, There is lack of field test in a difficult site to stakeout. In this study, field test of MG excavator was carried out at difficult site to stakeout, and productivity analysis and quality evaluation were conducted. As a result of the analysis of productivity, the minimum value was 20.5%, the maximum value was 56.9%, and the average productivity in 4 days was 38.3% higher than the standard product. As a result of the analysis of quality, the horizontal error ${\pm}1cm$ and the vertical error ${\pm}2cm$ confirmed in the previous study were verified.

$\cdot$일 석회석광산 견학 보고

  • 임광규
    • Cement
    • /
    • s.67
    • /
    • pp.25-41
    • /
    • 1977
  • $\cdot$일에서 기 개발 운영되고 있는 대형 노천광산 및 광산장비 제작 공장에 대한 전반적인 실태 파악을 통하여 향후 대형화로 국제규모화될 당사 석회석 광산의 운영 및 기술적인 방향을 모색코자 함이 금번 출장의 목적이었다. 이에 당사 광산분야 기술자 6명으로 팀을 구성, 76년 하반기에 약 1개월은 미국에서, 약 1개월은 일본에서 양국 굴지의 10여 open pit mine 및 3개 장비 메이커를 방문 견학하였다. 금번 방문 결과 다음과 같은 점을 확인할 수 있었다. 첫째 금번 당사의 560만톤 증설은 사실상 미$\cdot$일을 앞지르고 국제적으로 굴지의 규모임을 확인할 수 있었고, 둘째 deposit(광상)의 지리적 여건비교에서는 미국의 것에는 뒤지나 일본의 조건에 비해서는 우리의 것이 결코 악조건이 아니며, 세째 특히 일본 석회석 광산업계가 안고 있는 제반문제점의 심각성(광구 경계 인접에 따른 분쟁, 시가지 인접에 따른 공해문제, 개발 여건의 불량 등)에 비추어 볼 때 국내 광산 기술자들의 노력 여하에 따라 일본은 충분한 경쟁대상이 될 수 있으며 국내시멘트업계 광산의 지리적, 지질적 여건상 일본광산보다 더욱 우수한 광산을 만들 수 있다는 자신감을 얻었다. 그러나 (1) long term 한 측면에서의 광산개발의 결여 (2) dyke와 폐토 처리 및 quarry QC의 불가피성 (3) 사회적 요소의 낙후(M.S 뇌관부재, 메이커 출장에 의한 장비의 수리, 화약류의 산원 혼합사용 등)등은 두드러진 우리의 결함이라고 느꼈으며 이들 결함의 시정, 보완을 위해서 사내외적으로 기존질서의 재검토가 이루어져야 할 것으로 사료된다. 미$\cdot$일 광산에서 일반화되어 있는 radio(walkie-talkie) system 및 electric shovel 주우 Cement Co., 산구사업소에서 시도된 belt 반전장치, 인력의 확대관리 등은 조기도입하여 실용화할수 있는 대상이라 생각하며 일철의 조형산 개발(72년 생산 개시, 광산 개발비 200억원, 연산 능력 800만톤)은 괄목할만한 것이었다. 또한 앞으로 국내업계 여건이 허락하는 한 광산 기술자의 해외파견 회수를 증가시켜 더 많은 사람들이 직접 보고 느끼어 우리의 것을 개선 창조해 나갈 수 있는 기회를 많이 가져 국내는 물론 국제 경쟁에 대처할 수 있는 업계 직원의 자질 향상을 바란다.

  • PDF

Inelastic Behavior and Ductility Capacity of Reinforced Concrete Frame Subjected In Cyclic Lateral Load (반복 휭하중을 받는 철근콘크리트 골조의 비탄성 거동 및 연성능력)

  • 김태훈;김운학;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.467-473
    • /
    • 2002
  • The purpose of this study is to investigate the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load and to provide result for developing improved seismic design criteria. A computer program named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The strength increase of concrete due to the lateral confining reinforcement has been taken into account to model the confined concrete. In boundary plane at which each member with different thickness is connected local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. The proposed numerical method for the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load is verified by comparison with reliable experimental results.

Mechanical and Repair Performance of Sprayed Ductile Fiber Reinforced Cememtitious Composite(ECC) (습식스프레이공법으로 타설된 고인성 섬유보강 모르타르(ECC)의 역학적 특성과 보수 성능)

  • Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.462-469
    • /
    • 2003
  • This paper presents an experimental study on the potential durability enhancement of infrastructures repaired by a sprayed high ductile fiber-reinforced cementitious composite (ECC). For this study, a PVA-ECC which exhibits sprayable properties in the fresh state and tensile strain-hardening behavior in hardened state was sprayed and tested. The experimental results show that the sprayed ECC exhibits mechanical properties with strain capacity comparable to the cast ECC with the same mix design. During loading, the crack widths of ECC are tightly controlled with an average of 30${\mu}m$. It is also revealed that when sprayed ECC is used as a repair material, ductility represented by deformation capacity at peak load of repaired beams in flexure are obviously increased in comparison to those of commercial prepackaged mortar (PM) repaired beams. In addition to high delamination resistance, the significant enhancement of energy absorption capacity and crack width control in ECC repair system suggest that sprayed ECC can be effective in extending the service life of rehabilitated infrastructures.

Seismic performance evaluation of Pier-Shafts system with multi-layered soil (다양한 지반층을 갖는 Pier-Shafts 시스템의 내진성능평가)

  • Jang, Sung-Hwan;Nam, Sang-Hyeok;Song, Ha-Won;Kim, Byung-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.69-72
    • /
    • 2008
  • The so-called Pier-Shafts system which consists of the continuous column and shaft is often used to support the highway bridge structure because of advantages in easy construction and low cost. In the earthquake region, the Pier-Shafts system undergoes large displacements and represents a nonlinear behavior under the lateral seismic loading. The soil-pile interaction should be considered for more accurate analysis of the Pier-Shafts system. In this study, a transverse response of a reinforced concrete Pier-Shafts system inside multi-layered soil medium is predicted using a finite element program which adopts an elasto-plastic interface model for the interface behavior between the shaft and the soil. Then, seismic analysis is performed to evaluate the performance of Pier-Shafts system under strong ground motion and their results are verified with experimental data.

  • PDF