• Title/Summary/Keyword: 겹침 이음 길이

Search Result 41, Processing Time 0.024 seconds

Tensile Test for Lap Welded Joints of Rebars(SD400) (일반철근(SD400) 용접 겹침이음 인장실험)

  • Park, Won-Tae;Chun, Kyoung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.570-576
    • /
    • 2018
  • In reinforced concrete structures, the joints of ordinary rebars are usually lap joints, which are bound by binding wires with rebars, and mechanical joints by couplers. In domestic design standards (concrete design code), welded lap joints are restricted for ordinary rebars, but overseas standards allow welded lap joints of ordinary rebars through pre-heating. This study investigated the domestic and international standards/criteria and evaluated the fracture strength by performing the tensile test on the lap welded joint of SD400 grade rebars, which is used the most in the construction sites. The weld length of the specimen for weld lap joints is based on the minimum weld length (8d) given in the KS standard (KS B ISO 17660-1). According to AWS D1.4, the preheating temperature was set to $150^{\circ}C$ for D19 and below, and $260^{\circ}C$ for D22 and above. In the test results, the tensile strength of rebars with welded lap joints exceeded the required strength (125% of the yield strength) according to the concrete design code. To analyze the effect of preheating, the tensile strength of the welded rebars after preheating was not significantly different from that of the welded rebars without preheating. The carbon equivalent content (Ceq) of the rebars used in the test was 0.45% or less. Under AWS D1.4, no preheating is required if the carbon equivalent is less than 0.45%. All specimens with a welded lap length of 8d failed by a bar fracture. The effect of preheating was confirmed to be insignificant due to the low carbon equivalent of the rebar.

Equation of the Development Length for the Pullout tests with GFRP Reinforcement having Splitting Failure (쪼갬파괴가 발생된 GFRP 보강근을 사용한 이음길이 산정식)

  • Ha, Sang-Su;Choi, Dong-Uk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.859-862
    • /
    • 2008
  • The objective of this study offer the equation of the development length for GFRP reinforcement. Pullout test carried out to propose the development length for GFRP reinforcement. Test variables included embedment length (L=15, 30 and 45d$_b$ ), pure cover thickness(C=0.5, 1.0, 1.5, and 2.0d$_b$ ), diameter of reforcement(D10, D13 and D16), and three types, (domestic : K2KR, K3KR, foreign : AsUS) of GFRP reinforcement. The method of test were introduced pure pullout and tests lasted until the GFRP reinforcements were reached final failure. Based on the results through the pullout test, the bond characteristics and average bond stress for GFRP reinforcement were investigated. The equation of development length was proposed based on the regression analysis selected specimens having splitting failure. The equation gained from this study compared with the design equation provided by ACI committee 440.1R-06. The results through this study are capable of the flexural member design with GFRP reinforcement having lab spliced.

  • PDF

Characteristics of Bond Strength in Concrete Beams Reinforced with Galvanized Rebar (용융아연도금 철근콘크리트 보의 부착강도 특성)

  • Shin, Jae-Hyuk;Kim, Kyoung-Chul;Yang, In-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.136-143
    • /
    • 2015
  • Galvanizing is one of the method used to solve the problem of corrosion of reinforcement in concrete structures. There few research reported in the literature regarding the effect of galvanized coating on the behavior of lap splices in concrete beams. The objective of this study was to determine whether galvanized rebar adversely affects lap splice behavior and bond strength. Concrete beams reinforced with black or galvanized rebar were tested in flexure. The test variables included the presence of galvanized rebar steel diameter, and lengths of lap splices. The study concentrated on comparing crack, failure pattern, and bond strength. The ultimate behavior of beams reinforced with galvanized rebar was not significantly different from that of black steel reinforced beams. Therefore, the test results indicated that the use of galvanizing-coated rebar had no adverse effect on behavior in lap splices of rebar compared to the use of black rebar.

Strengths of Lap Splices Anchored by SD600 Headed Bars (겹침이음 실험을 통한 SD600 확대머리철근의 정착강도 평가)

  • Chun, Sung-Chul;Lee, Jin-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.217-224
    • /
    • 2013
  • Design provisions for the development length of headed bars in ACI 318-08 include concrete compressive strength and yield strength of headed bars as design parameters but do not consider the effects of transvers reinforcement. In addition, they have very strict limitation for clear spacing and material strengths because these provisions were developed based on limited tests. In this study, splice tests using SD600 headed bars with $2d_b$ clear spacing and transverse reinforcement were conducted. Test results show that unconfined specimens failed due to prying action and bottom cover concrete prematurely spalled. The contribution of head bearing on the anchorage strength is only 15% on average implying that unconfined specimens failed before the head bearing was not sufficiently developed. Confined specimens with stirrups placed along whole splice length have enhanced strengths in bearing as well as bond because the stirrups prevented prying action and improved bond capacity. Bond failure occurred in locally confined specimens where stirrups were placed only at the ends of splice length. The stirrups at ends of splice lengths can prevent prying action but the bond capacity did not increase. From regression analysis of test results, an equation to predict anchorage strength of headed bars was developed. The proposed equation consists of bond and bearing contributions and includes transverse reinforcement index. The average ratio of tests to predictions is 1.0 with coefficient of variation of 6%.

Evaluation of Structural Behavior of Connections in Precast Arch Structures (프리캐스트 아치구조의 이음부 구조 거동 평가)

  • Shim, Chang Su;Kim, Dong Chan;Choi, Dae;Jin, Kyung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.747-756
    • /
    • 2016
  • In this paper, a connection details for precast arch structures was proposed. Experiments were performed to evaluate structural performance of the loop connection details satisfying current design requirements and of alternative details for improvement of constructability. Precast arch specimens considering the current design requirements showed higher structural capacity than a cast-in-place arch specimen. Crack width at the connection of arch crown showed smaller value than 0.2 mm due to increased compression force by the applied vertical load. Strengthening by wire-mesh at notch area of the connection improved initial crack control capability. Connection detail with couplers and headed bars showed similar capacity to the reference specimen. The alternative details to improve constructability of reinforcements can be used without decreasing structural performance. Specimens with smaller internal diameter of mandrel and shorter loop splicing than the current design codes showed worse behavior in terms of crack width control.

A Study on Out-of-Plane Flexural Behavior of the Structure with a Vertical Plane Connection between a Reinforced Concrete Wall and a Steel Plate Concrete Wall (철근 콘크리트 벽과 강판 콘크리트 벽이 수직으로 만나는 이질접합 구조물의 면외 휨 거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Hahm, Kyung Won;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • This paper describes the experimental study on the structural behavior of the vertical plane connection between a reinforced concrete wall and a steel plate concrete wall under out-of-plane flexural loads. The specimen was tested under a dynamic test with the use of cyclic loads. As a result of the test, ductile failure mode of vertical bars was shown under a push load and the failure load was more than that of the nominal strength of the specimen. However, the shear failure mode of the connection was confirmed in case of a pull test and thus demonstrates a need for a shear reinforcement.

A Study on Flexural and Shear Behavior of the Structure with Steel Plate Concrete to Reinforced Concrete Member's Connection (철근 콘크리트와 강판 콘크리트 간 이질접합부로 구성된 구조물의 휨 및 전단거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Lee, Jong Bo;Won, Deok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.267-275
    • /
    • 2012
  • This paper describes the experimental study on the structural behavior of the joint plane between a RC(Reinforced Concrete) wall and a SC(Steel Plate Concrete) wall under out-of plane flexural loads and in-plane shear loads. The test specimens were produced with L and I shape to assess efficiently flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquake, cyclic loading tests were carried out. As results of the out-of plane flexural tests, ductile failure mode of vertical bars was shown under a push load and the failure load was more than nominal strength of the specimen. And the latter test was performed to verify the variation which was composition presence of horizontal bars in the SC member. The test results showed that capacity of the specimens was more than their nominal strength regardless of composition presence of horizontal bars.

Bond Strength Evaluation of RC Beams on the Rib Shape of Reinforcing Bars (철근 마디 형상에 따른 RC 휨부재의 부착강도 평가)

  • Hong, Geon-Ho;Kim, Jin-Ah;Choi, Oan-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.393-400
    • /
    • 2011
  • The needs for high strength structural materials have recently increased, because construction and cost efficiencies are demanded by the costumers. But, the use of high strength reinforcing bars requires longer development and splice lengths compared to normal strength bars. This restriction may cause reduction in construction efficiency and require more complicated details. The purpose of this paper is to evaluate the bond strength on the rib shape of reinforcing bars to decrease development and splice lengths of high strength reinforcements. Total of 5 simple beam specimens were tested, and the main test variable was a rib shape of reinforcing bars. Test data was analyzed in the viewpoint of bond strength, load-deflection relationship, and crack pattern. Test results indicated that the bond strength of high relative rib area reinforcing bars increased up to 11% compared to normal strength reinforcements. And the improved rib shape reinforcements, which were formed with high and low height rib, increased the bond strength up to 23% even though the relative rib area was same as the high relative rib area reinforcements. Serviceability performances such as deflection number of cracking, and maximum crack width were similar in all specimens, so it is safe to conclude that the improved rib shape reinforcements can be applied to the structural members.

An Experimental Study on Bond Strength of High-Strength Reinforcing Bars with High Relative Rib Area (높은 마디면적 고강도 철근의 부착강도에 관한 실험적 연구)

  • Hong Geon-Ho;Choi Dong-Uk;Choi Oan-Chul;Hong Gi-Suop
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.375-384
    • /
    • 2005
  • The effects of bar deformation properties on bond of steel reinforcing bars to concrete are experimentally studied to predict the bond strength. Based on the previous research about high relative rib area, bond strength between reinforcing bars and concrete can be improved by the control of rib height and spacing. But, the equations in Korean code provisions to estimate development and splice length do not include these specifications of reinforcing bars. So the purpose of this paper is to determine the effect of relative rib area to the bond strength. This paper describes 2 kinds of experimental researches. Thirty beam-end specimens were tested to investigate the effects of bar size and relative rib areas ranging from 0.112 to 0.162. And, twelve lap-splice beam specimens were tested to the same variables. Each test results are normalized and compared with the proposed equations of ACI 408 committee. The results show that bond strength is increased as bar size and the relative rib area(Rr) increase. The distribution of flexural cracks and failure aspect do not appear to be affected by $R_r$.

Development of Filler Type Mechanical Splice for High Strength Re-bar (고강도 철근용 충전형 기계적 이음장치 개발 연구)

  • Lee, Seongsoo;Chun, Homin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.686-693
    • /
    • 2018
  • Various types of re-bar splicing methods have been developed and applied to reinforced concrete (RC) structures in the field. According to previous studies, the coupler splice is relatively superior to the lap splice in terms of cost efficiency when the diameter or strength of the re-bar is larger or higher. This study was performed to develop a filler type mechanical splice for a high-strength re-bar (SD600) in reinforced concrete structures. The deformed re-bars were inserted into a circular steel tube coupler and high-strength epoxy filler was then injected into the coupler. The splice system was completed by hardened filler in a coupler. The epoxy filler was used as the manufactured production epoxy to conduct experiments of filler type mechanical splice specimens, and to observe the failure loads and failure aspects of the specimens. For this goal, the experiment of one-way tensile test was conducted for the epoxy filler type mechanical splices specimens according to the compressive strength of epoxy, length of coupler, and diameter of re-bar. The shape of failure of the re-bar coupler splice showed that the re-bars were pulled between the lugs of the re-bars as a result of the shear fracture of the hardened epoxy. The actual failure load of the experiment specimen was approximately 2 times higher than the expected failure load of the epoxy filler, which greatly improves the failure load of the hardening epoxy filler due to the restraint of the steel coupler.