• Title/Summary/Keyword: 결함 예측

Search Result 15,891, Processing Time 0.043 seconds

The Effect of Spatial Scale and Resolution in the Prediction of Future Land Use using CA-Markov Technique (면적규모 및 공간해상도가 CA-Markov 기법에 의한 미래 토지이용 예측결과에 미치는 영향)

  • Kim, Seong-Joon;Lee, Yong-Jun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.58-70
    • /
    • 2007
  • The purpose of this study is to predict future land use using Landsat images through assessing the effect of spatial scale and resolution in applying CA (Cellular Automata)-Markov technique. The scale for areas ranging from $31.26km^2$ to $84.48km^2$ showed about 11% difference of overall accuracies. Among the five spatial resolutions (10m, 30m, 50m, 100m, 150m), 30m resolution showed the best result in the prediction of area and spatial distribution of urban areas. Based on the results, the 2004 land use by CA-Markov was predicted using 1996 and 2001 land use data and compared with the 2004 land use by maximum likelihood classification. After that, future land uses of 2030, 2060 and 2090 were predicted and the results showed a tendency of gradual increase in urban area and high decrease in forest area.

  • PDF

Probabilistic Runoff Analysis using Ensemble Technoque with Localization Method (앙상블 기반 지역화 기법을 이용한 확률론적 유출량 분석)

  • Lee, Han-Yong;Jang, Suk-Hwan;Lee, Jae-Kyoung;Jo, Jun-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.207-207
    • /
    • 2019
  • 최근 우리나라는 지역 특성 및 기후변화의 영향으로 인해 수문학적 요소의 변동성이 커지고 수자원의 지속적인 관리에 있어 유출량은 중요한 문제로 여겨지고 있다. 특히 일부 소하천 또는 접경지역과 같은 미계측유역은 수문학적 요소에 대한 자료가 부족하고 수문모형의 초기치 설정과 과거 유출량 자료를 통하여 최적화한 매개변수를 결정해야하므로 장기유출분석이 어렵다. 본 연구의 적용유역으로 미계측유역인 임진강상류 유역에 대한 유출량 추정을 위해 계측 유역의 자료를 활용하여 모형의 매개변수 등을 추정하는 지역화 기법인 다중선형회귀분석과 공간근접분석을 활용하여 유출량을 산정 및 검증하였다. 또한, 확률론적 예측이 가능한 앙상블 기법 적용을 통한 유출량 예측을 하였고, 이를 예측 정확성 평가지표를 통해 효율성 검토를 수행하여 미계측유역의 유출량에 대해 확률론적 예측을 수행하였다. 대표적 지역화 기법의 적용성을 검토한 결과, 계측유역을 통해 다중선형회귀분석과 공간근접분석을 abcd 모형에 적용하였다. 모의유출량을 산정하고 실측 유출량과 비교 분석 결과 모의정확성이 높게 분석되었다. 이와 같은 검증 결과를 토대로 미계측유역의 유출량을 추정하였다. 또한, 지역화 기법을 앙상블 기법에 적용하여 확률론적 유출량 예측의 효율성을 검토하였다. 적용유역과 같은 지류를 포함하고 있는 임진강하류 유역을 대상으로 수행하였다. 검증기간(2013년~2017년) 동안의 월 예측 유출량 앙상블 생성을 위해 과거 강우량와 증발량(1988년~2012년) 자료를 사용하였으며, 지역화 기법을 적용한 abcd 모형을 이용하였다. 예측 유출량의 정확성 평가를 실시하였으며, 정확성이 비교적 높게 분석되었다. 이와 같은 결과를 토대로 미계측유역의 확률론적 유출량을 예측하였다. 따라서, 대표적 지역화 기법을 앙상블 기법에 적용하여 확률론적 유출량을 예측할 경우 보다 정확한 유출량 예측이 가능하다.

  • PDF

Electric Power Demand Prediction Using Deep Learning Model with Temperature Data (기온 데이터를 반영한 전력수요 예측 딥러닝 모델)

  • Yoon, Hyoup-Sang;Jeong, Seok-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.307-314
    • /
    • 2022
  • Recently, researches using deep learning-based models are being actively conducted to replace statistical-based time series forecast techniques to predict electric power demand. The result of analyzing the researches shows that the performance of the LSTM-based prediction model is acceptable, but it is not sufficient for long-term regional-wide power demand prediction. In this paper, we propose a WaveNet deep learning model to predict electric power demand 24-hour-ahead with temperature data in order to achieve the prediction accuracy better than MAPE value of 2% which statistical-based time series forecast techniques can present. First of all, we illustrate a delated causal one-dimensional convolutional neural network architecture of WaveNet and the preprocessing mechanism of the input data of electric power demand and temperature. Second, we present the training process and walk forward validation with the modified WaveNet. The performance comparison results show that the prediction model with temperature data achieves MAPE value of 1.33%, which is better than MAPE Value (2.33%) of the same model without temperature data.

A Study on Defect Diagnostics for Health Monitoring of a Turbo-Shaft Engine for SUAV (스마트 무인기용 터보축 엔진의 성능진단을 위한 결함 예측에 관한 연구)

  • Park Juncheol;Roh Taeseong;Choi Dongwhan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.248-251
    • /
    • 2005
  • In this paper, health monitoring technique has been studied for performance deterioration caused by the defects of the gas turbine. The parameters for performance diagnostics have been extracted by using GSP program for modeling the target engine. The virtual sensor model for the health monitoring has been built of those data. The position and magnitude of the defects of the engine components have been determined by using Multiple Linear Regression technique and the method using the weight in order to diagnose the single and multiple defects.

  • PDF

A study on improvement of prediction by edge line for moving picture compression (동영상 압축에서 주축을 이용한 움직임 예측의 개선에 관한 연구)

  • 차경환;문중수;김재호
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.853-856
    • /
    • 2000
  • 영상통신에 대한 관심이 다방면에서 증가되고 있고 동영상 압축에 있어서 복원 이미지 개선이나 압축 데이터의 감소에 대한 연구가 활발이 진행되고 있다. 본 논문에서는 움직임 예측 블록에 강한 직선 경계(edge)가 있는 경우 그 경계 주변에 원 이미지와 예측 이미지 간의 움직임 예측 오류가 많다는 점에 착안하여 움직임 예측블록을 개선 할 수 있는 알고리즘을 제안한다. 움직임예측 블록의 화소(pixel)값들을 이용해서 직선 경계의 각도와 움직임 예측 오류를 보상할 값을 구하고 경계위치에 보상함으로써 움직임 예측 오류 블록의 압축데이터가 감소된다. 기존의 동영상 압축 방법에 제안 방법을 첨가한 후 시뮬레이션 한 결과 동일한 PSNR에서 H.263+의 압축 데이터에 비해 평균 약 4% 개선된 압축데이터의 결과를 얻었다.

  • PDF

A Design and Implementation of Branch Predictor for High Performance Superscalar Processors (고성능 슈퍼스칼라 프로세서를 위한 분기예측기의 설계 및 구현)

  • 서정민;김귀우;이상정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.22-24
    • /
    • 2001
  • 슈퍼스칼라 프로세서에서는 분기 명령의 결과 지연으로 명령의 공급이 중단되는 것을 방지하고 지속적인 파이프라인 처리를 위해서 분기의 결과를 미리 예측하여 명령을 폐치하고 있다. 본 논문에서는 심플스칼라 툴 셋을 사용하여 슈퍼스칼라 프로세서에서 사용되는 대표적인 동적 분기예측 방법 시뮬레이션 환경을 구축한다. 동적 분기예측 방법으로 분기 타겟버퍼(Branch Target Buffer, BTB) 상에서 분기명령의 자기 히스토리에 근거한 BTB 방식과 이전 분기명령의 히스토리와의 상관관계를 고려한 Gshare 분기예측기를 적용 구현한다. 심플스칼라 시뮬레이터에 SPEC95 벤치마크 프로그램을 실행시켜 디자인 파라미터 변화에 따른 분기 예측기의 예측정확도를 실험한다. 또한 BTB와 Gshare 분기예측기를 VHDL로 구현하고 Synopsys 툴을 이용하여 시뮬레이션 및 합성 과정을 거쳐 게이트 크기와 파워 소모량을 측정한다.

An XML-Based Analysis Tool for Gene Prediction Results (XML기반의 유전자 예측결과 분석도구)

  • Kim Jin-Hong;Byun Sang-Hee;Lee Myung-Joon;Park Yang-Su
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.755-764
    • /
    • 2005
  • Recently, as it is considered more important to identify the function of ail unknown genes in living things, many tools for gene prediction have been developed to identify genes in the DNA sequences. Unfortunately, most of those tools use their own schemes to represent their programs results, requiring researchers to make additional efforts to understand the result generated by them So, it is desirable to provide a standardized method of representing predicted gene information, which makes it possible to automatically produce the predicted results for a given set of gene data In this paper, we describe an effective U representation for various predicted gene information, and present an XML-based analysis tool for gene predication results based on this representation. The developed system helps users of gene prediction tools to conveniently analyze the predicted results and to automatically produce the statistical results of the prediction. To show the usefulness of the tool, we applied our programs to the results generated by GenScan and GeneID, which are widely used gene prediction systems.

Development of flash flood forecasting model using method (Nesting 기법을 이용한 돌발홍수 예측모형 개발)

  • Ji, Hee-Sook;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.403-403
    • /
    • 2012
  • 최근 단시간 동안에 특정지역에 집중되는 국지적 호우에 의한 돌발홍수가 빈번히 발생하고 있으며, 이에 따른 위험과 손실이 증가하고 있는 추세이다. 현재 국내에서는 이러한 피해를 최소화하고자 돌발홍수 예측모형을 개발하고 예 경보 시스템을 구축하여 다양한 비구조적 대책을 마련하고 있다. 그러나 활용되는 예측모형의 경우 개념적 유출량인 한계유출량으로부터 돌발홍수능(Flash Flood Guidance, FFG)을 결정하여 예측 강우와 상대적인 대소 비교를 통해 돌발홍수의 발생가능성 유무를 판단하게 되는데, 문제는 산정되는 한계유출량은 개념적이기 때문에 검증이 어렵고 산정방법도 다양하여 불확실성이 높다는 단점이 있다. 이에 본 연구에서는 기존의 돌발홍수 예측 방법이 아닌, 수문모형 Nesting 기법을 이용한 돌발 홍수 예측 방법을 개발하였다. 저해상도의 대유역 기반의 유출량이 큰 영역의 경계값이 되고, 대유역을 이루고 있는 소유역을 고해상도의 작은 영역이라 할 때, 경계값인 대유역의 기반의 유출량을 참고 유출량으로 하여 소유역의 유출을 물리적 혹은 개념적으로 보다 타당하게 모의하는 방법이 수문모형 Nesting 기법이다. 이러한 기법에 필요한 강우-유출 모형으로는 대유역의 경우, SURR 모형(Sejong University Rainfall-Runoff model)을 선택하였으며, 대유역을 이루는 소유역의 유출모의는 물리적 기반의 분포형 모형인 CASC2D 모형을 이용하였다. 또한 실시간 활용을 위해서는 CASC2D 모형의 매개변수를 자동으로 추정하는 기술이 요구되며, 본 연구에서는 매개변수 전역 최적화 방법인 SCE-UA(The Shuffled Complex Evolution, University of Arizona) 기법을 활용하였다. 본 연구에서 사용한 수문모형의 적용성을 평가한 결과 대상유역에 대한 적용성이 높은 것으로 나타났으며, 연계된 두 모형의 유출거동이 유사하게 나타난 것으로 확인되었다. 본 연구에서는 Nesting 기법을 이용하여 0.5m 하천 수위의 상승 여부에 따라 돌발홍수의 발생 가능성을 예측하는 기법을 제안하였으며, 돌발홍수 사례와 일반호우사상으로부터 이 방법의 적용성을 평가하였다. 실제 돌발홍수가 발생한 유역을 선정하고 연계된 두 모형을 대상 유역에 적용한 결과 Nesting 기반의 돌발홍수 예측방법은 기존의 한계유출량 산정 방법에서 반영하지 못한 사상을 적절히 반영한 것으로 나타났다. 본 연구에서 개발한 Nesting 기법을 이용한 돌발홍수 예측모형은 일반적인 강우량 비교의 돌발홍수 예측방법에서 벗어나 새로운 돌발홍수 예측방법을 제안한 측면에서 큰 의미가 있다고 사료되며, 이러한 연구 결과는 실시간 돌발홍수 예측 시스템의 기본 모형으로 활용이 가능할 것으로 판단된다.

  • PDF

A study on activation functions of Artificial Neural Network model suitable for prediction of the groundwater level in the mid-mountainous area of eastern Jeju island (제주도 동부 중산간지역 지하수위 예측에 적합한 인공신경망 모델의 활성화함수 연구)

  • Mun-Ju Shin;Jeong-Hun Kim;Su-Yeon Kang;Jeong-Han Lee;Kyung Goo Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.520-520
    • /
    • 2023
  • 제주도 동부 중산간 지역은 화산암으로 구성된 지하지질로 인해 지하수위의 변동폭이 크고 변동양상이 복잡하여 인공신경망(Artificial Neural Network, ANN) 모델 등을 활용한 지하수위의 예측이 어렵다. ANN에 적용되는 활성화함수에 따라 지하수의 예측성능은 달라질 수 있으므로 활성화함수의 비교분석 후 적절한 활성화함수의 사용이 반드시 필요하다. 본 연구에서는 5개 활성화함수(sigmoid, hyperbolic tangent(tanh), Rectified Linear Unit(ReLU), Leaky Rectified Linear Unit(Leaky ReLU), Exponential Linear Unit(ELU))를 제주도 동부 중산간지역에 위치한 2개 지하수 관정에 대해 비교분석하여 최적 활성화함수 도출을 목표로 한다. 또한 최적 활성화함수를 활용한 ANN의 적용성을 평가하기 위해 최근 널리 사용되고 있는 순환신경망 모델인 Long Short-Term Memory(LSTM) 모델과 비교분석 하였다. 그 결과, 2개 관정 중 지하수위 변동폭이 상대적으로 큰 관정은 ELU 함수, 상대적으로 작은 관정은 Leaky ReLU 함수가 지하수위 예측에 적절하였다. 예측성능이 가장 낮은 활성화함수는 sigmoid 함수로 나타나 첨두 및 최저 지하수위 예측 시 사용을 지양해야 할 것으로 판단된다. 도출된 최적 활성화함수를 사용한 ANN-ELU 모델 및 ANN-Leaky ReLU 모델을 LSTM 모델과 비교분석한 결과 대등한 지하수위 예측성능을 나타내었다. 이것은 feed-forward 방식인 ANN 모델을 사용하더라도 적절한 활성화함수를 사용하면 최신 순환신경망과 대등한 결과를 도출하여 활용 가능성이 충분히 있다는 것을 의미한다. 마지막으로 LSTM 모델은 가장 적절한 예측성능을 나타내어 다양한 인공지능 모델의 예측성능 비교를 위한 기준이 되는 참고모델로 활용 가능하다. 본 연구에서 제시한 방법은 지하수위 예측과 더불어 하천수위 예측 등 다양한 시계열예측 및 분석연구에 유용하게 사용될 수 있다.

  • PDF

Proposal of Empirical Formula for Bedform Size on West Coast of Korea (서해안의 해저표면형상 예측 경험식 제안)

  • Kim, Hyoseob;Yoo, Hojun;Jang, Changhwan
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.457-469
    • /
    • 2012
  • Bedform data at 4 shallow zones in the Yellow Sea where waves as well as tidal range are high and bed material is relatively coarse were collected and analyzed here. Water depths in the study area where the bedform data were collected are 10 ~ 65 meters, and ripple lengths well developed are between 6 ~ 13 meters. Existing empirical formula for prediction of ripple length as for coexistence of waves and currents include Khelifa and Ouellet(2000) and Soulsby(2005), both of which have been based on laboratory measurements, or field measurements at different physical environment from the Yellow Sea with respect to tidal range, wave strength, and bed material. New scaling factors are proposed here for better prediction of the ripple length on coastal zone in the Yellow Sea.