Proceedings of the Korean Information Science Society Conference
/
2001.10c
/
pp.10-12
/
2001
와이드 이슈 슈퍼스칼라 프로세서에서 값 예측기는 한 명령어의 결과를 미리 예측하여 명령들 간의 데이터 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성(Instruction Level Parallesim ILP)을 향상시키는 기법이다. 본 논문에서는 명령어 수준 병렬성을 이용하여 성능을 향상시키기 위하여 데이터 값을 미리 예측하여 병렬로 이슈하고 수행하는 값 예측기의 성능을 비교분석 한다. 먼저 값 예측기 종류별로 성능을 측정한다 그리고 테이블의 갱신시점, 트레이스 캐시 유무 및 명령윈도우 크기에 따른 값 예측기의 성능영향을 평가분석 한다. 성능분석 결과 최근 값 예측기가 간소한 하드웨어 구성에도 불구하고 우수한 성능을 보였다. 그리고 예측테이블 갱신시점과 트레이스캐시의 사용이 값 예측기의 성능향상에 영향을 주었다.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.354-354
/
2017
홍수예경보는 발생되는 홍수의 규모와 시간을 가능한 정확하고 빠르게 예측하여 홍수에 대한 위험성을 사전에 알리고자 하는데 목적이 있다. 따라서 하천범람에 따른 피해를 최소화하기 위한 홍수예경보는 일정시간의 선행시간을 확보하는 것이 매우 중요하다. 본 연구에서는 현재 하천에서 측정되고 있는 수위 관측 자료를 이용하여 하류의 수위를 예측하였다. 수위 예측을 위해 다중회귀모형 및 신경망 모형을 한강의 제1지류인 횡성댐 상류 섬강 시험유역에 적용하였다. 다중회귀모형 및 신경망 모형의 학습에는 섬강 시험유역의 2002년부터 2010년까지의 수위 관측 자료를 이용하였으며, 학습된 모형을 이용하여 30분 이내에 발생 가능한 수위를 예측하였다. 모의 결과 신경망 수위예측모형의 결정계수는 0.967으로 나타났으며, 다중회귀수위예측 모형의 결정계수는 0.815로 나타나 신경망을 이용한 수위예측모형이 다중회귀모형보다 좀 더 나은 예측 결과를 나타내는 것을 확인할 수 있었다. 본 연구결과는 향후 중소하천에서 선행시간을 확보한 홍수 예경보 구축에 활용할 수 있을 것으로 판단된다.
Proceedings of the Acoustical Society of Korea Conference
/
1991.06a
/
pp.113-116
/
1991
본 논문에서는 고속 도로 주변에서 교통 소음 대책으로 사용되는 방음벽 효과에 대해 교통 소음 모델에 의한 예측값과 실측값을 비교하였다. 도로 교통 소음로서는 일본 음향 학회 모델, 국립 환경원 모델, 조한인 모델을 대상으로 하였다. 세가지 모델의 예측값과 실측값의 비교 결과, 갓길(노견)에서는 일본 음향 학회 모델과 국립 환경원 모델에 의한 예측값이 실측값과 $\pm$3.5dB(A) 차이로 비슷한 결과를 보였으며, 소음 측정 지점이 음원과 먼 경우는 속도가 빠를수록 일본 음향 학회 모델은 예측값과 실측값의 차이가 커졌다. 조한인 모델은 시가지 도로에서는 잘 맞지만 고속 도로에 적용하기에는 적합하지 않았다.
Proceedings of the Korean Nuclear Society Conference
/
1995.05b
/
pp.1005-1010
/
1995
지반-구조물 상호작용해석에 부분구조법의 적용성 확인과 해석법의 개선을 모색하기 위하여, 대만 Hualien지방에 건설한 대형 내진시험 구조물의 뒷채움후 강제진동시험 결과를 부분구조법으로 예측하고 예측후상관해석을 수행하였다. 모델로서는 재료시험과 지반조사 결과로 작성된 통일모델과 예측후상관해석모델을 사용하였으며, 해석은 진동 수영역과 시간영역에서 각각 이루어졌다 연구 결과로 깊이 묻힌 구조물의 경우는 구조물이 묻힌 측면지반의 영향인 수평병진과 수평축회전의 연계 임피던스함수에 대한 적절한 평가와 해석시에 반드시 고려되어야함을 알 수 있었다.
KIPS Transactions on Software and Data Engineering
/
v.2
no.1
/
pp.1-6
/
2013
For predicting defect-prone module in software, SVM classifier showed good performance in a previous research. But there are disadvantages that SVM parameter should be chosen differently for every kernel, and algorithm should be performed iteratively for predict results of changed parameter. Therefore, we find these parameters using Genetic Algorithm and compare with result of classification by Backpropagation Algorithm. As a result, the performance of GA-SVM model is better.
신약을 개발하거나 단백질 구조를 예측하는데 Molecular Mechanics (MM)의 방법을 사용한다. 하지만, MM 만으로는 자연현상에서 일어나는 결과를 정확하게 기술하기 어렵다. 본 연구는 기존의 MM 방법으로는 정확히 예측이 불가능한 비 공유결합 중 하나인 ${\pi}-{\pi}$ interaction을 양자역학 계산을 통해 정확한 예측이 가능한지 보았다. ${\pi}-{\pi}$ interaction 이란 생체 내, 의약 화합물에서 발견되는 결합이기 때문에, 단백질과 결합하는 구조의 예측이 중요하다고 할 수 있다. 본 실험은 ${\pi}-{\pi}$ interaction을 갖는 Sandwich, T shape, 그리고 Parallel displaced 세 가지 모형을 가지고 양자역학 계산을 수행하였다. 양자역학 계산은 DFT의 세가지 함수 M06_2X, M05_2X, B3LYP를 이용하였다. 실험결과에서 세 가지 함수가 각기 다른 결과를 보였는데, M06_2X의 결과에서 ${\pi}-{\pi}$ interaction을 더 정확하게 계산하였다. 이러한 결과를 바탕으로, 양자역학의 방법을 통해 MM에서는 예측이 불가능한 ${\pi}-{\pi}$ interaction을 계산 할 수 있고 이 부분을 고려하여 화합물 간의 결합구조를 예측을 향상시킬 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.452-455
/
2022
4차 산업혁명의 확산으로 의학계에서도 딥러닝 기술을 이용한 질병의 치료결과 예측 연구가 활발하다. 이와 관련, 일부 연구에서 국소적인 환자 데이터의 활용으로 인해 도출된 연구 결과의 일반화가 어려웠으며 예측률 제고를 위해 특정 딥러닝 알고리즘을 중심으로 한 실험이 추진되어 다양한 알고리즘별 예측률의 비교·분석 결과를 제시하는 연구도 미흡하였다. 이에, 건강보험심사평가원의 대규모 진료 정보와 다종의 알고리즘을 제공하는 AutoML을 이용, 사망률이 높은 80대·90대 노령자 대상 폐암 진단 후 84개월간의 사망률을 예측하는 Decision Tree 등 5개 알고리즘별 모델을 생성하고 이를 활용, 사망률의 예측 성능을 비교하고 사망률에 영향을 미치는 요인에 대한 분석 결과를 도출하였다.
Proceedings of the Korea Information Processing Society Conference
/
2020.05a
/
pp.323-326
/
2020
태양광 발전은 이산화탄소 배출로 인한 기후 변화에 대응하는 주요 수단으로 인식되어 수요와 필요성이 급격하게 증가하고 있다. 최적의 태양광 발전 시스템의 운영을 위해서는 정교한 전력수요 및 태양광 발전량 예측 모델이 요구되며, 온도 및 일사량은 태양광 발전량 예측 모델의 필수적인 입력 변수이다. 하지만, 한국 기상청의 동네예보는 일사량에 관한 예측값을 제공하지 않아 정교한 태양광 발전량 예측 모델을 구축하는 것은 어렵다. 이를 위해 일사량 예측 기법에 관한 많은 연구사례가 보고되고 있지만, 다수의 연구들은 충분한 데이터 셋을 이용하여 일사량 예측 모델을 개발하였다. 초기 태양광 발전 시스템 운영을 위해서는 불충분한 데이터 셋을 이용한 예측 모델 개발이 필요하나 이에 대한 사례는 불충분하다. 본 논문은 실제 태양광 발전 시스템에서 수집된 불충분한 데이터 셋을 이용한 단기 일사량 예측 기법을 제안한다. 먼저, 기상청 동네예보의 다양한 기상 요인들을 이용하여 일사량 예측 모델을 위한 입력 변수를 구성한다. 다음으로, 조건부 랜덤 포레스트를 이용하여 일사량 예측 모델을 구성하며, 설명 가능한 일사량 예측뿐만 아니라 더욱더 많은 데이터 셋을 학습하기 위해 시계열 교차검증을 수행한다. 실험 결과, 제안한 기법은 다른 예측 기법들보다 높은 예측 정확도를 보일 뿐만 아니라 설명 가능한 예측 결과를 제시할 수 있음을 보여준다.
이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.
Proceedings of the Korean Operations and Management Science Society Conference
/
1995.04a
/
pp.455-468
/
1995
기술변화에 의한 상품의 대체과정과 수요 성장 추세를 설명하고자 개발된 기존의 통계학적 수요예측 모형들은 확률밀도함수 또는 특정한 수학적 함수의 외형적 특성을 이용한 함수적 접근방법을 사용한 결과 과거 데이터들의 단순 경향치의 추세 설명에 한정되고 상한치를 향한 무한 접근 성장으로 일관되는 함수적 제약을 안고 있으며, 수요의 영향 요인을 반영하지 못하므로써 데이터가 없는 신제품 서비스 예측에 적용이 불가능한 문제점을 갖고 있다. 본 논문에서는 이들 문제점들을 극복하고 시장에 처음 출하되는 새로운 재화 또는 서비스의 수요예측 및 포화수준 도달 이후의 체감 성장에도 적용가능한 방법론으로서 수용의 결정요인을 반영한 예측모형을 제시한다. 모형의 예측능력을 판단하기 위해 정보통신 분야의 몇가지 대표적 제품 및 서비스를 대상으로 기존 모형(peal 모형, weibull 모형, NUI 모형, compertz 모형)들과 NTPS 모형(Nonasymtotic Technological Product Subsituation Model)을 적용하여 예측 결과를 비교하였다. 또한 본 모형을 활용하여 새로운 제품 및 서비스 수요예측을 위한 모수의 특성에 대하여도 검토해 보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.