• Title/Summary/Keyword: 결함 예측

Search Result 15,891, Processing Time 0.04 seconds

A Performance Evaluation of Value Predictors in a Superscalar Processor (슈퍼스칼라 프로세서에서 값 예측기의 성능평가)

  • 전병찬;박희룡;이상정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.10-12
    • /
    • 2001
  • 와이드 이슈 슈퍼스칼라 프로세서에서 값 예측기는 한 명령어의 결과를 미리 예측하여 명령들 간의 데이터 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성(Instruction Level Parallesim ILP)을 향상시키는 기법이다. 본 논문에서는 명령어 수준 병렬성을 이용하여 성능을 향상시키기 위하여 데이터 값을 미리 예측하여 병렬로 이슈하고 수행하는 값 예측기의 성능을 비교분석 한다. 먼저 값 예측기 종류별로 성능을 측정한다 그리고 테이블의 갱신시점, 트레이스 캐시 유무 및 명령윈도우 크기에 따른 값 예측기의 성능영향을 평가분석 한다. 성능분석 결과 최근 값 예측기가 간소한 하드웨어 구성에도 불구하고 우수한 성능을 보였다. 그리고 예측테이블 갱신시점과 트레이스캐시의 사용이 값 예측기의 성능향상에 영향을 주었다.

  • PDF

Forecasting Technique of Downstream Water Level using the Observed Water Level (관측 수위자료를 이용한 하류 홍수위 예측기법)

  • Kim, Sang Mun;Choi, Heung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.354-354
    • /
    • 2017
  • 홍수예경보는 발생되는 홍수의 규모와 시간을 가능한 정확하고 빠르게 예측하여 홍수에 대한 위험성을 사전에 알리고자 하는데 목적이 있다. 따라서 하천범람에 따른 피해를 최소화하기 위한 홍수예경보는 일정시간의 선행시간을 확보하는 것이 매우 중요하다. 본 연구에서는 현재 하천에서 측정되고 있는 수위 관측 자료를 이용하여 하류의 수위를 예측하였다. 수위 예측을 위해 다중회귀모형 및 신경망 모형을 한강의 제1지류인 횡성댐 상류 섬강 시험유역에 적용하였다. 다중회귀모형 및 신경망 모형의 학습에는 섬강 시험유역의 2002년부터 2010년까지의 수위 관측 자료를 이용하였으며, 학습된 모형을 이용하여 30분 이내에 발생 가능한 수위를 예측하였다. 모의 결과 신경망 수위예측모형의 결정계수는 0.967으로 나타났으며, 다중회귀수위예측 모형의 결정계수는 0.815로 나타나 신경망을 이용한 수위예측모형이 다중회귀모형보다 좀 더 나은 예측 결과를 나타내는 것을 확인할 수 있었다. 본 연구결과는 향후 중소하천에서 선행시간을 확보한 홍수 예경보 구축에 활용할 수 있을 것으로 판단된다.

  • PDF

On Comparison of Theoretical Formulars for Estimation of Highway Noise Barriers Effect (고속도로에서 방음벽 효과 예측을 위한 이론식이 비교)

  • 박충상
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.113-116
    • /
    • 1991
  • 본 논문에서는 고속 도로 주변에서 교통 소음 대책으로 사용되는 방음벽 효과에 대해 교통 소음 모델에 의한 예측값과 실측값을 비교하였다. 도로 교통 소음로서는 일본 음향 학회 모델, 국립 환경원 모델, 조한인 모델을 대상으로 하였다. 세가지 모델의 예측값과 실측값의 비교 결과, 갓길(노견)에서는 일본 음향 학회 모델과 국립 환경원 모델에 의한 예측값이 실측값과 $\pm$3.5dB(A) 차이로 비슷한 결과를 보였으며, 소음 측정 지점이 음원과 먼 경우는 속도가 빠를수록 일본 음향 학회 모델은 예측값과 실측값의 차이가 커졌다. 조한인 모델은 시가지 도로에서는 잘 맞지만 고속 도로에 적용하기에는 적합하지 않았다.

  • PDF

대형 내진시험 구조물에 대한 강제진동시험 결과의 예측 및 예측후상관해석

  • 박형기;조양희;윤철호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.1005-1010
    • /
    • 1995
  • 지반-구조물 상호작용해석에 부분구조법의 적용성 확인과 해석법의 개선을 모색하기 위하여, 대만 Hualien지방에 건설한 대형 내진시험 구조물의 뒷채움후 강제진동시험 결과를 부분구조법으로 예측하고 예측후상관해석을 수행하였다. 모델로서는 재료시험과 지반조사 결과로 작성된 통일모델과 예측후상관해석모델을 사용하였으며, 해석은 진동 수영역과 시간영역에서 각각 이루어졌다 연구 결과로 깊이 묻힌 구조물의 경우는 구조물이 묻힌 측면지반의 영향인 수평병진과 수평축회전의 연계 임피던스함수에 대한 적절한 평가와 해석시에 반드시 고려되어야함을 알 수 있었다.

  • PDF

Predicting Defect-Prone Software Module Using GA-SVM (GA-SVM을 이용한 결함 경향이 있는 소프트웨어 모듈 예측)

  • Kim, Young-Ok;Kwon, Ki-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • For predicting defect-prone module in software, SVM classifier showed good performance in a previous research. But there are disadvantages that SVM parameter should be chosen differently for every kernel, and algorithm should be performed iteratively for predict results of changed parameter. Therefore, we find these parameters using Genetic Algorithm and compare with result of classification by Backpropagation Algorithm. As a result, the performance of GA-SVM model is better.

벤젠 이합체와 그 치환체의 양자역학을 통한 π-π interaction의 계산

  • Jo, Ji-Seong;Cho, Art.
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.385-397
    • /
    • 2014
  • 신약을 개발하거나 단백질 구조를 예측하는데 Molecular Mechanics (MM)의 방법을 사용한다. 하지만, MM 만으로는 자연현상에서 일어나는 결과를 정확하게 기술하기 어렵다. 본 연구는 기존의 MM 방법으로는 정확히 예측이 불가능한 비 공유결합 중 하나인 ${\pi}-{\pi}$ interaction을 양자역학 계산을 통해 정확한 예측이 가능한지 보았다. ${\pi}-{\pi}$ interaction 이란 생체 내, 의약 화합물에서 발견되는 결합이기 때문에, 단백질과 결합하는 구조의 예측이 중요하다고 할 수 있다. 본 실험은 ${\pi}-{\pi}$ interaction을 갖는 Sandwich, T shape, 그리고 Parallel displaced 세 가지 모형을 가지고 양자역학 계산을 수행하였다. 양자역학 계산은 DFT의 세가지 함수 M06_2X, M05_2X, B3LYP를 이용하였다. 실험결과에서 세 가지 함수가 각기 다른 결과를 보였는데, M06_2X의 결과에서 ${\pi}-{\pi}$ interaction을 더 정확하게 계산하였다. 이러한 결과를 바탕으로, 양자역학의 방법을 통해 MM에서는 예측이 불가능한 ${\pi}-{\pi}$ interaction을 계산 할 수 있고 이 부분을 고려하여 화합물 간의 결합구조를 예측을 향상시킬 수 있다.

  • PDF

A Study on the Prediction of Mortality Rate after Lung Cancer Diagnosis for the Elderly in their 80s and 90s Based on Deep Learning (딥러닝 기반 80대·90대 노령자 대상 폐암 진단 후 사망률 예측에 관한 연구)

  • Byun, Kyungkeun;Lee, Deoggyu;Shin, Youngtae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.452-455
    • /
    • 2022
  • 4차 산업혁명의 확산으로 의학계에서도 딥러닝 기술을 이용한 질병의 치료결과 예측 연구가 활발하다. 이와 관련, 일부 연구에서 국소적인 환자 데이터의 활용으로 인해 도출된 연구 결과의 일반화가 어려웠으며 예측률 제고를 위해 특정 딥러닝 알고리즘을 중심으로 한 실험이 추진되어 다양한 알고리즘별 예측률의 비교·분석 결과를 제시하는 연구도 미흡하였다. 이에, 건강보험심사평가원의 대규모 진료 정보와 다종의 알고리즘을 제공하는 AutoML을 이용, 사망률이 높은 80대·90대 노령자 대상 폐암 진단 후 84개월간의 사망률을 예측하는 Decision Tree 등 5개 알고리즘별 모델을 생성하고 이를 활용, 사망률의 예측 성능을 비교하고 사망률에 영향을 미치는 요인에 대한 분석 결과를 도출하였다.

Explainable Solar Irradiation Forecasting Based on Conditional Random Forests (조건부 랜덤 포레스트 기반의 설명 가능한 일사량 예측)

  • Moon, Jihoon;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.323-326
    • /
    • 2020
  • 태양광 발전은 이산화탄소 배출로 인한 기후 변화에 대응하는 주요 수단으로 인식되어 수요와 필요성이 급격하게 증가하고 있다. 최적의 태양광 발전 시스템의 운영을 위해서는 정교한 전력수요 및 태양광 발전량 예측 모델이 요구되며, 온도 및 일사량은 태양광 발전량 예측 모델의 필수적인 입력 변수이다. 하지만, 한국 기상청의 동네예보는 일사량에 관한 예측값을 제공하지 않아 정교한 태양광 발전량 예측 모델을 구축하는 것은 어렵다. 이를 위해 일사량 예측 기법에 관한 많은 연구사례가 보고되고 있지만, 다수의 연구들은 충분한 데이터 셋을 이용하여 일사량 예측 모델을 개발하였다. 초기 태양광 발전 시스템 운영을 위해서는 불충분한 데이터 셋을 이용한 예측 모델 개발이 필요하나 이에 대한 사례는 불충분하다. 본 논문은 실제 태양광 발전 시스템에서 수집된 불충분한 데이터 셋을 이용한 단기 일사량 예측 기법을 제안한다. 먼저, 기상청 동네예보의 다양한 기상 요인들을 이용하여 일사량 예측 모델을 위한 입력 변수를 구성한다. 다음으로, 조건부 랜덤 포레스트를 이용하여 일사량 예측 모델을 구성하며, 설명 가능한 일사량 예측뿐만 아니라 더욱더 많은 데이터 셋을 학습하기 위해 시계열 교차검증을 수행한다. 실험 결과, 제안한 기법은 다른 예측 기법들보다 높은 예측 정확도를 보일 뿐만 아니라 설명 가능한 예측 결과를 제시할 수 있음을 보여준다.

실시간 CRM을 위한 분류 기법과 연관성 규칙의 통합적 활용;신용카드 고객 이탈 예측에 활용

  • Lee, Ji-Yeong;Kim, Jong-U
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.135-140
    • /
    • 2007
  • 이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.

  • PDF

A conceptual model for forecasting innovation diffusion in informations and telecommunications market (정보통신시장의 수용예측을 위한 개념적 예측모형의 구성)

  • 강병용;황정연;임주환;한치문
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.455-468
    • /
    • 1995
  • 기술변화에 의한 상품의 대체과정과 수요 성장 추세를 설명하고자 개발된 기존의 통계학적 수요예측 모형들은 확률밀도함수 또는 특정한 수학적 함수의 외형적 특성을 이용한 함수적 접근방법을 사용한 결과 과거 데이터들의 단순 경향치의 추세 설명에 한정되고 상한치를 향한 무한 접근 성장으로 일관되는 함수적 제약을 안고 있으며, 수요의 영향 요인을 반영하지 못하므로써 데이터가 없는 신제품 서비스 예측에 적용이 불가능한 문제점을 갖고 있다. 본 논문에서는 이들 문제점들을 극복하고 시장에 처음 출하되는 새로운 재화 또는 서비스의 수요예측 및 포화수준 도달 이후의 체감 성장에도 적용가능한 방법론으로서 수용의 결정요인을 반영한 예측모형을 제시한다. 모형의 예측능력을 판단하기 위해 정보통신 분야의 몇가지 대표적 제품 및 서비스를 대상으로 기존 모형(peal 모형, weibull 모형, NUI 모형, compertz 모형)들과 NTPS 모형(Nonasymtotic Technological Product Subsituation Model)을 적용하여 예측 결과를 비교하였다. 또한 본 모형을 활용하여 새로운 제품 및 서비스 수요예측을 위한 모수의 특성에 대하여도 검토해 보았다.

  • PDF