• Title/Summary/Keyword: 결함 심각도

Search Result 2,756, Processing Time 0.029 seconds

Analysis of the Impact Factors of Peak and Non-peak Time Accident Severity Using XGBoost (XGBoost를 활용한 첨두, 비첨두시간 사고 심각도 영향요인 분석)

  • Je Min Seong;Byoung Jo Yoon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.440-447
    • /
    • 2024
  • Purpose: The number of registered vehicles in Korea continues to increase. As traffic volume increases gradually due to improved quality of life, the severity of accidents is expected to increase and congestion problems are also expected. Therefore, it is necessary to analyze the accident factors of pointed traffic accidents and non-pointed traffic accidents. Method: The severity of the apical and non-pointed traffic accidents in Incheon Metropolitan City is analyzed by dividing them into apical and non-pointed traffic accidents to investigate the factors affecting the accident. XGBoost machine learning techniques were applied to analyze the severity of pointed and non-pointed traffic accidents and visualized as plot through the results. Result: It was analyzed that during non-peak hours, such as the case of the victim's vehicle type at peak times, the victim's vehicle type and construction machinery are variables that increase the severity of the accident. Conclusion: It is meaningful to derive the seriousness factors of apical and non-pointed accidents, and it is hoped that it will be used to reduce congestion costs by reducing the seriousness of accidents in the case of apical and non-pointed in the future.

A Study of Opposing Left-Turn Conflict Severity at Signalized Intersections (신호교차로 대향좌회전 상충심각도 구분에 관한 연구)

  • Kim, Eung-Cheol;Park, Jee-Hyung;Oh, Ju-Taek;Rho, Jeong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.83-92
    • /
    • 2007
  • In 2004, the number of traffic crashes and deaths in Korea are 220,755 and 6,563, respectively. Korea Road Traffic Safety Authority reported that the number of traffic accidents occupies over 25% out of total accidents, and found that traffic crash probability is extremely high at intersections since intersections have various traffic conflict points. A Safety study using Traffic Conflict Technique is much more useful than a study using reported traffic accident data. Existing traffic conflict research hardly considered conflict severity occurring at intersections. So, the study developed new criteria considering conflict severity. Analytic methods precisely detecting crashing points using field surveying data, and applied an application of our new criteria. Opposing left-turn conflict criteria was devided by three groups(high severe conflict, middle severe conflict, and less severe conflict) based on conflict boundary by means of a standard vehicle length. After analyzing field surveying data(3hours), we found totally 41 opposing left-turn conflicts. 3 cases are high severe conflict, and another 10 cases are middle severe conflicts, and the other cases are less severe. Studies related in conflict severity are considerably important to evaluate intersection's detailed safety index, and existing studies(purely conflict counting does not consider severity) have a limitation to clearly determine the level of safety of intersections for an application.

  • PDF

Studying the Comparative Analysis of Highway Traffic Accident Severity Using the Random Forest Method. (Random Forest를 활용한 고속도로 교통사고 심각도 비교분석에 관한 연구)

  • Sun-min Lee;Byoung-Jo Yoon;WutYeeLwin
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.156-168
    • /
    • 2024
  • Purpose: The trend of highway traffic accidents shows a repeating pattern of increase and decrease, with the fatality rate being highest on highways among all road types. Therefore, there is a need to establish improvement measures that reflect the situation within the country. Method: We conducted accident severity analysis using Random Forest on data from accidents occurring on 10 specific routes with high accident rates among national highways from 2019 to 2021. Factors influencing accident severity were identified. Result: The analysis, conducted using the SHAP package to determine the top 10 variable importance, revealed that among highway traffic accidents, the variables with a significant impact on accident severity are the age of the perpetrator being between 20 and less than 39 years, the time period being daytime (06:00-18:00), occurrence on weekends (Sat-Sun), seasons being summer and winter, violation of traffic regulations (failure to comply with safe driving), road type being a tunnel, geometric structure having a high number of lanes and a high speed limit. We identified a total of 10 independent variables that showed a positive correlation with highway traffic accident severity. Conclusion: As accidents on highways occur due to the complex interaction of various factors, predicting accidents poses significant challenges. However, utilizing the results obtained from this study, there is a need for in-depth analysis of the factors influencing the severity of highway traffic accidents. Efforts should be made to establish efficient and rational response measures based on the findings of this research.

Data Fusion, Ensemble and Clustering for the Severity Classification of Road Traffic Accident in Korea (데이터융합, 앙상블과 클러스터링을 이용한 교통사고 심각도 분류분석)

  • 손소영;이성호
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.597-600
    • /
    • 2000
  • 계속적인 증가 추세를 보이고 있는 교통량으로 인해 환경 문제뿐 아니라 교통사고로 인한 사상자 및 물적피해가 상당량으로 집계되고 있다. 본 논문에서는 데이터융합 및 앙상블 클러스터링방법을 이용한 교통사고 심각도 분류분석방법을 제안함으로서 교통사고예방에 기여하고자 한다. 이를 위하여 신경망과 Decision-Tree기법을 이용하여 얻은 물적피해와 신체상해가 발생할 확률을 융합하는 전형적인 데이터 융합기법(템스터-쉐퍼, 베이지안 방법, 로지스틱융합방법)을 사용하였다. 또한, 분류정확도를 향상시키고자 Bootstrap 재추출 방법을 이용해 얻어진 여러 개의 분류예측 결과 중 다수의 분류결과를 선택하는 앙상블 (arcing, bagging)기법을 적용하였다. 더불어, 본 연구에서는 클러스터링 방법을 제시하고, 이 방법이 기존의 융합기법, 앙상블기법과 비교한 결과, 분류예측면에서 정확도가 향상됨을 보였다.

  • PDF

Characteristics of Crashes with Early and Late Elderly Drivers by Injury Severity (부상 심각도에 의한 초기 및 후기 고령 운전자 사고 특성 분석)

  • Kim, Sangsu;Choi, Borim;Chung, Younshik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.477-484
    • /
    • 2023
  • The number and age of elderly drivers are continuously increasing according to the extension of the human lifespan. Therefore, in transportation, efforts are being made to differentiate and manage elderly drivers by age group. This study aims to identify the factors affecting the crash severity of early and late elderly drivers, compared to middle-aged drivers, and to identify the characteristics between these groups. Crash data that occurred on nationwide roads for the past 5 years (2017-2021) was applied. Unlike previous studies, this study only targeted drivers in their 40s and older, when presbyopia begins: middle-aged driver (40-64), early elderly driver (65-74), and late elderly driver (75+). As a result of logistic regression analysis, a total of 18 variables were found to affect serious injuries including fatalities in early and late elderly drivers. Most of these variables appeared to lead to severity more sensitively in the late elderly group. The results of this study are expected to be useful as basic information for establishing traffic safety policies for elderly drivers in the future.

Comparative Analysis of Elderly's and Non-elderly's Human Traffic Accident Severity (고령운전자와 비고령운전자의 인적교통사고 심각도 비교분석)

  • Lee, Sang Hyuk;Jeung, Woo Dong;Woo, Yong Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.133-144
    • /
    • 2012
  • This study focused on estimating influential factors of traffic accidents and analyzing traffic accident severity of elderly and non elderly using traffic accident data. In order to reclassify elderly and non elderly traffic accident by a statistical method from entire traffic accident data, multiple discriminant analysis was applied. Also ordered logit model was applied for analyzing traffic accident severities using traffic accident severities as an independent variable and transportation facilities, road conditions and human characteristics as dependent variables. As results of the comparison between elderly and non elderly traffic accident, the traffic accident severity was affected by the age, types of traffic accidents, human characteristics and road conditions as well. Also, transportation facilities and road conditions affected to more elderly traffic accident than non elderly. Therefore, traffic accident severity would be decreased with the improvement of transportation facilities and road conditions for the elderly.

A Study on the Application of Accident Severity Prediction Model (교통사고 심각도 예측 모형의 활용방안에 관한 연구 (서해안 고속도로를 중심으로))

  • Won, Min-Su;Lee, Gyeo-Ra;O, Cheol;Gang, Gyeong-U
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2009
  • It is important to study on the traffic accident severity reduction because traffic accident is an issue that is directly related to human life. Therefore, this research developed countermeasure to reduce traffic accident severity considering various factors that affect the accident severity. This research developed the Accident Severity Prediction Model using the collected accident data from Seohaean Expressway in 2004~2006. Through this model, we can find the influence factors and methodology to reduce accident severity. The results show that speed limit violation, vehicle defects, vehicle to vehicle accident, vehicle to person accident, traffic volume, curve radius CV(Coefficient of variation) and vertical slope CV were selected to compose the accident severity model. These are certain causes of the severe accident. The accidents by these certain causes present specific sections of Seohaean Expressway. The results indicate that we can prevent severe accidents by providing selected traffic information and facilities to drivers at specific sections of the Expressway.

The Study on the Accident Injury Severity Using Ordered Probit Model (순서형 프로빗 모형을 이용한 사고심각도 분석)

  • Ha, Oh-Keun;Oh, Ju-Taek;Won, Jai-Mu;Sung, Nak-Moon
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.4 s.82
    • /
    • pp.47-55
    • /
    • 2005
  • In recent years, the rapid growth of vehicles have increased traffic crashes. Since they can cause the economic losses and have put the life qualify in danger, there should be numerous efforts to reduce traffic crashes. To reduce traffic crashes, this research seeks to improve the safety of intersections by analysing causations of injury severity with Ordered Probability Model. This research applied the Ordered Probit Model, which assumes that ${\epsilon}_i$(random error) is normally distributed, for model calibration and used $p^2$ (likelihood ratio) and $x^2$ (Chi-square) for model selection. The results show that minor road traffic, heavy vehicle rates, major and minor right-turn rates, presence of lightings, speed limits, instructive line for left-turn traffic are significant factors affecting crash severities at signalized intersections.

Development of a Severity Level Decision Making Process of Road Problems and Its Application Analysis using Deep Learning (딥러닝을 이용한 도로 문제점의 심각도 판단기법 개발 및 적용사례 분석)

  • Jeon, Woo Hoon;Yang, Inchul;Lee, Joyoung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.535-545
    • /
    • 2022
  • The purpose of this study is to classify the various problems in surface road according to their severity and to propose a priority decision making process for road policy makers. For this purpose, the road problems reported by Cheok-cheok app were classified, and the EPDO was adopted and calculated as an index of their severity. To test applicability of the proposed process, some images of road problems reported by the app were classified and annotated, and the Deep Learning was used for machine learning of the curated images, and then the other images of road problems were used for verification. The detecting success rate of the road problems with high severity such as road kills, obstacles in a lane, road surface cracks was over 90%, which shows the applicability of the proposed process. It is expected that the proposed process will make the app possible to be used in the filed to make a priority decision making by classifying the level of severity of the reported road problems automatically.