임상시험에서 흔히 발생하는 결측치 중 이분형 결측치에 대한 논의를 하였다. 본 논문에서는 결측치가 발생하는 기재를 논의하고 기존의 여러 이분형 결측치 대체 방법과 수정된 결측치 대체방법을 소개하였다. 이후 각 결측치 대체 방법을 실제 자료에 적용하여 모의 실험을 진행하였다. 실제 자료의 성격 및 결측률의 변화에 따른 결측치 대체 방법들의 성능비교를 통해 진행하였다. 마지막으로 각 결측치 대체 방법에 대한 모의 실험 결과를 요약하고 토의하였다.
본 연구는 결측치 비율이 높은 시계열 데이터를 효과적으로 분석하고 예측할 수 있는 머신러닝 모델을 구축하기 위해 다양한 결측치 처리 방법을 비교 분석하였다. 이를 위해 PSMF(Predictive State Model Filtering), MissForest, IBFI(Imputation By Feature Importance) 방법을 적용하였으며, 이후 LightGBM, XGBoost, EBM(Explainable Boosting Machines) 머신러닝 모델을 사용하여 예측 성능을 평가하였다. 연구 결과, 결측치 처리 방법 중에서는 MissForest와 IBFI가 비선형적 데이터 패턴을 잘 반영하여 가장 높은 성능을 나타냈으며, 머신러닝 모델 중에서는 XGBoost와 EBM 모델이 LightGBM 모델보다 더 높은 성능을 보였다. 본 연구는 결측치 비율이 높은 시계열 데이터의 분석 및 예측에 있어 비선형적 결측치 처리 방법과 머신러닝 모델의 조합이 중요함을 강조하며, 실무적으로 유용한 방법론을 제시하였다.
데이터 마이닝은 특정분야에서만 관심을 갖는 분야가 아니라 현재 우리주변 여러 분야에서 많이 사용되고 응용되고 있다. 즉, 수많은 데이터 가운데 숨겨져 있는 유용한 상관관계를 발견하여, 미래에 실행 가능한 정보를 예측하여 추출해 내고 추후에 의사 결정에 이용하는 과정을 말한다. 하지만, 일부 데이터 집합에서는 매우 많은 결측치를 포함하는 변수들이 존재한다. 다시 말해서 다수의 레코드에서 측정치가 존재하지 않는 데이터 집합이 존재한다. 그래서 본 논문에서는 Cholesterol 값을 예측하기 위한 결측치 처리에 따른 모델트리 알고리즘을 적용하고, 실험을 통해서 각 처리방식에 대한 성능을 분석한다. 또는 이 결과를 통하여 결측치 대체방법에 대한 효율적인 적용사례를 제시한다.
마이크로어레이 실험의 실험자들은 원 측정치인 영상을 조사하여 통계적 분석이 가능한 자료의 형태로 변환하는데 이러한 과정을 흔히 사전 처리라고 부른다. 마이크로어레이의 사전 처리는 불량 영상의 제거(filtering), 결측치의 대치와 표준화로 세분되어질 수 있다. 표준화 방법과 결측치 대치 방법 각각에 대하여서는 많은 연구가 보고되었으나, 사전 처리를 구성하는 원소들간의 적정한 순서에 대하여서는 연구가 미흡하다. 표준화 방법과 결측치 대치 방법 중 어느 것이 먼저 실시되어야 하는지에 대하여서 아직 알려진 바가 없다. 본 연구는 사전 처리 순서에 대한 탐색적 시도로서 대장암과 위암을 대상으로 실시한 두 조의 cDNA 마이크로어레이 실험 자료를 이용하여 사전 처리를 구성하는 원소들간의 다양한 순서에 따라 검색된 특이 발현 유전자 군이 어떻게 변화하는지를 분석하고 있다. 즉, 결측치대치와 표준화의 여러가지 방법들의 조합에 따라 검색된 특이 발현 유전자 군이 얼마나 일치적인가를 확인하고자 한다. 결측치 대치 방법으로는 K 최근접 이웃 방법과 베이지안 주성분 분석을 고려하였고, 표준화 방법으로는 전체 표준화, 블럭별 국소(within-print tip group) 평활 표준화 그리고 분산 안정화를 유도하는 표준화 방법을 적용하였다. 따라서 사전 처리를 구성하는 두개 원소가 각각 2개 수준과 3개 수준을 가지고 있고, 두개 원소의 순열에 따른 모든 가능한 사전 처리 개수 수는 12개가 된다. 본 연구에서는 12개 사전 처리 방법 각각에 따라 정상 조직과 암 조직간 특이적으로 발현하는 유전자 군을 검색하였고, 사전 처리 순서를 바꾸었을때 유전자 군이 얼마나 일치적으로 유지되는지를 파악하고 있다. 표준화 방법으로 분산 안정화 표준화를 사용할 경우는 사전 처리 순서에 따라 특이 발현 유전자 군이 다소 민감하게 변하는 것을 보이고 있다.
센서 데이터는 여러가지 원인으로 인해 데이터 결측치가 발생할 수 있으며, 결측치로 인한 데이터의 처리 방식에 따라 데이터 분석 결과가 다르게 해석될 수 있다. 이는 펫 헬스 케어 서비스에서 치명적인 문제로 연결될 수 있다. 따라서 본 논문에서는 펫 웨어러블 디바이스로부터 수집되는 다양한 센서 데이터의 결측치를 처리하기 위해 GATs(Graph Attention neTworks)와 LSTM(Long Short Term Memory)을 결합하여 활용한 데이터 결측치 처리 기법을 제안한다. 펫 웨어러블 디바이스의 센서 데이터가 서로 연관성을 가지고 있다는 점을 바탕으로 인접 노드의 Attention 수치와 Feature map을 도출한다. 이후 Prediction Layer 를 통해 결측치의 Feature 를 예측한다. 예측된 Feature 를 기반으로 Decoding 과정과 함께 결측치 보간이 이루어진다. 제안된 기법은 모델의 변형을 통해 이상치 탐지에도 활용할 수 있을 것으로 기대한다.
웹으로부터 유용한 정보를 얻기 위한 연구는 현재 많이 진행되고 있다. 본 논문에서는 특히 웹 로그 데이터의 희소성에 대한 문제 해결과 이를 통한 웹 사용자의 군집화 방안에 대하여 연구하였다. MCMC 방법의 베이지안 추론에 의한 결측치 대체 기법을 이용하여 웹 데이터의 희소성을 제거하였고, 주성분에 의한 산점도를 통하여 형상지도의 차원을 결정한 자기 조직화지도를 이용하여 웹 사용자의 군집화를 수행하였다. 제안 기법은 기존의 방법들에 비해 모형의 정확도와 빠른 학습 시간을 제공하여 주었다. KDD Cup 데이터를 이용한 실험을 통하여 제안 방법에 대한 문제 해결 절차 및 성능 평가를 객관적으로 확인하였다.
통계자료는 국가의 정책을 수립하는데 가장 기초가 되는 자료로서 국가 경영에 필수적인 인프라에 해당하며, 국가정책 수립의 근거자료로 활용하기 위해서는 생산되는 통계자료의 신뢰성이 담보되어야 한다. 신뢰성은 생산되는 통계자료의 정확성을 가장 기본으로 하며, 더 나아가서는 시기적절하게 통계자료를 생산하고 수요자 중심의 통계지표를 발굴 제시했을 때 통계자료로서 의미를 갖게 된다고 할 수 있다. 본 연구는 통계자료가 갖는 의미에 맞고 효과적인 통계자료를 생산하기 위하여 현재 발간중인 한국수문조사연보의 통계량과 산정기준, 적용성 및 활용방안에 대한 종합적인 검토를 통해 표준화된 통계처리 기준을 제시하고자 한다. 이를 위해 강수량과 수위, 유량측정성과 및 유량자료 통계량 44종에 대한 통계량별 결측치 처리기준과 활용성 및 결측치 처리방안에 대하여 검토로 통계값의 일관성 및 객관성이 확보될 수 있도록 개선방안을 마련하였다. 더불어 자연현상에 대한 명확한 해석이 가능하고, 기후변화에 따른 기왕의 극치자료와 비교검토가 용이하도록 통계량 표 개선과 이동시간 기준 최다강수량 등 신규 통계값에 대한 산정기준 방안을 제안하였다. 본 연구의 결과로 제시한 신규 통계량 정보를 추가적으로 제시하고, 표준화된 통계처리 기준에 따라 통계값을 산정할 경우 통계 자료의 일관성 및 객관성이 확보될 수 있을 것으로 기대된다.
전자의무기록 (EMR)과 같은 의료 현장에서 수집되는 대용량의 데이터는 임상 해석적으로 잠재가치가 크고 활용도가 다양하나 결측값이 많아 희소성이 크다는 한계점이 있어 분석이 어렵다. 특히 EMR의 정보수집과정에서 발생하는 결측값은 무작위적이고 임의적이어서 분석 정확도를 낮추고 예측 모델의 성능을 저하시키는 주된 요인으로 작용하기 때문에, 결측치 대체는 필수불가결하다. 최근 통상적으로 활용되어지던 통계기반 알고리즘기반의 결측치 대체 알고리즘보다는 딥러닝 기술을 활용한 알고리즘들이 새로이 등장하고 있다. 본 논문에서는 Generative Adversarial Network를 기반한 최신 결측값 대치 알고리즘인 Generative Adversarial Imputation Nets을 적용하여 EMR에서의 성능을 분석해보고자 하였다.
Data imputation is a crucial issue in data analysis because quality data are highly correlated with the performance of AI models. Particularly, it is difficult to collect quality time-series data for uncertain situations (for example, electricity blackout, delays for network conditions). Thus, it is necessary to research effective methods of time-series data imputation. Many studies on time-series data imputation can be divided into 5 parts, including statistical based, matrix-based, regression-based, deep learning (RNN and GAN) based methodologies. This study reviews and organizes these methodologies. Recently, deep learning-based imputation methods are developed and show excellent performance. However, it is associated to some computational problems that make it difficult to use in real-time system. Thus, the direction of future work is to develop low computational but high-performance imputation methods for application in the real field.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.