• 제목/요약/키워드: 결측치 처리

검색결과 26건 처리시간 0.023초

임상시험에서 이분형 결측치 처리방법의 비교연구 (Comparison of binary data imputation methods in clinical trials)

  • 안구성;김동재
    • 응용통계연구
    • /
    • 제29권3호
    • /
    • pp.539-547
    • /
    • 2016
  • 임상시험에서 흔히 발생하는 결측치 중 이분형 결측치에 대한 논의를 하였다. 본 논문에서는 결측치가 발생하는 기재를 논의하고 기존의 여러 이분형 결측치 대체 방법과 수정된 결측치 대체방법을 소개하였다. 이후 각 결측치 대체 방법을 실제 자료에 적용하여 모의 실험을 진행하였다. 실제 자료의 성격 및 결측률의 변화에 따른 결측치 대체 방법들의 성능비교를 통해 진행하였다. 마지막으로 각 결측치 대체 방법에 대한 모의 실험 결과를 요약하고 토의하였다.

불완비 데이터에서 분류 나무의 구축

  • 우주성;김규성
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2001년도 추계학술발표회 논문집
    • /
    • pp.105-108
    • /
    • 2001
  • 본 논문에서는 결측치가 있는 불완비 데이터에서 분류나루를 구축하는 방법을 고찰하였다. 기존의 결측치 처리 방법인 대리 분리 방법의 대안으로 대체 방법으로 결측치를 처리한 후 분류나무를 구축하는 방법을 제안하였다.

  • PDF

결측치 비율이 높은 시계열 데이터 분석 및 예측을 위한 머신러닝 모델 구축 (Development of a Machine Learning Model for Imputing Time Series Data with Massive Missing Values)

  • 고방원;한용희
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.176-182
    • /
    • 2024
  • 본 연구는 결측치 비율이 높은 시계열 데이터를 효과적으로 분석하고 예측할 수 있는 머신러닝 모델을 구축하기 위해 다양한 결측치 처리 방법을 비교 분석하였다. 이를 위해 PSMF(Predictive State Model Filtering), MissForest, IBFI(Imputation By Feature Importance) 방법을 적용하였으며, 이후 LightGBM, XGBoost, EBM(Explainable Boosting Machines) 머신러닝 모델을 사용하여 예측 성능을 평가하였다. 연구 결과, 결측치 처리 방법 중에서는 MissForest와 IBFI가 비선형적 데이터 패턴을 잘 반영하여 가장 높은 성능을 나타냈으며, 머신러닝 모델 중에서는 XGBoost와 EBM 모델이 LightGBM 모델보다 더 높은 성능을 보였다. 본 연구는 결측치 비율이 높은 시계열 데이터의 분석 및 예측에 있어 비선형적 결측치 처리 방법과 머신러닝 모델의 조합이 중요함을 강조하며, 실무적으로 유용한 방법론을 제시하였다.

모델트리의 결측치 처리 방법에 따른 콜레스테롤수치 예측의 성능 변화 (Using Missing Values in the Model Tree to Change Performance for Predict Cholesterol Levels)

  • 정용규;원재강;신성철
    • 서비스연구
    • /
    • 제2권2호
    • /
    • pp.35-43
    • /
    • 2012
  • 데이터 마이닝은 특정분야에서만 관심을 갖는 분야가 아니라 현재 우리주변 여러 분야에서 많이 사용되고 응용되고 있다. 즉, 수많은 데이터 가운데 숨겨져 있는 유용한 상관관계를 발견하여, 미래에 실행 가능한 정보를 예측하여 추출해 내고 추후에 의사 결정에 이용하는 과정을 말한다. 하지만, 일부 데이터 집합에서는 매우 많은 결측치를 포함하는 변수들이 존재한다. 다시 말해서 다수의 레코드에서 측정치가 존재하지 않는 데이터 집합이 존재한다. 그래서 본 논문에서는 Cholesterol 값을 예측하기 위한 결측치 처리에 따른 모델트리 알고리즘을 적용하고, 실험을 통해서 각 처리방식에 대한 성능을 분석한다. 또는 이 결과를 통하여 결측치 대체방법에 대한 효율적인 적용사례를 제시한다.

  • PDF

마이크로어레이 자료의 사전 처리 순서에 따른 검색의 일치도 분석 (A Concordance Study of the Preprocessing Orders in Microarray Data)

  • 김상철;이재휘;김병수
    • 응용통계연구
    • /
    • 제22권3호
    • /
    • pp.585-594
    • /
    • 2009
  • 마이크로어레이 실험의 실험자들은 원 측정치인 영상을 조사하여 통계적 분석이 가능한 자료의 형태로 변환하는데 이러한 과정을 흔히 사전 처리라고 부른다. 마이크로어레이의 사전 처리는 불량 영상의 제거(filtering), 결측치의 대치와 표준화로 세분되어질 수 있다. 표준화 방법과 결측치 대치 방법 각각에 대하여서는 많은 연구가 보고되었으나, 사전 처리를 구성하는 원소들간의 적정한 순서에 대하여서는 연구가 미흡하다. 표준화 방법과 결측치 대치 방법 중 어느 것이 먼저 실시되어야 하는지에 대하여서 아직 알려진 바가 없다. 본 연구는 사전 처리 순서에 대한 탐색적 시도로서 대장암과 위암을 대상으로 실시한 두 조의 cDNA 마이크로어레이 실험 자료를 이용하여 사전 처리를 구성하는 원소들간의 다양한 순서에 따라 검색된 특이 발현 유전자 군이 어떻게 변화하는지를 분석하고 있다. 즉, 결측치대치와 표준화의 여러가지 방법들의 조합에 따라 검색된 특이 발현 유전자 군이 얼마나 일치적인가를 확인하고자 한다. 결측치 대치 방법으로는 K 최근접 이웃 방법과 베이지안 주성분 분석을 고려하였고, 표준화 방법으로는 전체 표준화, 블럭별 국소(within-print tip group) 평활 표준화 그리고 분산 안정화를 유도하는 표준화 방법을 적용하였다. 따라서 사전 처리를 구성하는 두개 원소가 각각 2개 수준과 3개 수준을 가지고 있고, 두개 원소의 순열에 따른 모든 가능한 사전 처리 개수 수는 12개가 된다. 본 연구에서는 12개 사전 처리 방법 각각에 따라 정상 조직과 암 조직간 특이적으로 발현하는 유전자 군을 검색하였고, 사전 처리 순서를 바꾸었을때 유전자 군이 얼마나 일치적으로 유지되는지를 파악하고 있다. 표준화 방법으로 분산 안정화 표준화를 사용할 경우는 사전 처리 순서에 따라 특이 발현 유전자 군이 다소 민감하게 변하는 것을 보이고 있다.

펫 헬스 케어 서비스를 위한 GATs 기반 센서 데이터 처리 기법 설계 (Design of Sensor Data's Missing Value Handling Technique for Pet Healthcare Service based on Graph Attention Networks)

  • 이지훈;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.463-465
    • /
    • 2021
  • 센서 데이터는 여러가지 원인으로 인해 데이터 결측치가 발생할 수 있으며, 결측치로 인한 데이터의 처리 방식에 따라 데이터 분석 결과가 다르게 해석될 수 있다. 이는 펫 헬스 케어 서비스에서 치명적인 문제로 연결될 수 있다. 따라서 본 논문에서는 펫 웨어러블 디바이스로부터 수집되는 다양한 센서 데이터의 결측치를 처리하기 위해 GATs(Graph Attention neTworks)와 LSTM(Long Short Term Memory)을 결합하여 활용한 데이터 결측치 처리 기법을 제안한다. 펫 웨어러블 디바이스의 센서 데이터가 서로 연관성을 가지고 있다는 점을 바탕으로 인접 노드의 Attention 수치와 Feature map을 도출한다. 이후 Prediction Layer 를 통해 결측치의 Feature 를 예측한다. 예측된 Feature 를 기반으로 Decoding 과정과 함께 결측치 보간이 이루어진다. 제안된 기법은 모델의 변형을 통해 이상치 탐지에도 활용할 수 있을 것으로 기대한다.

MCMC 결측치 대체와 주성분 산점도 기반의 SOM을 이용한 희소한 웹 데이터 분석 (Sparse Web Data Analysis Using MCMC Missing Value Imputation and PCA Plot-based SOM)

  • 전성해;오경환
    • 정보처리학회논문지D
    • /
    • 제10D권2호
    • /
    • pp.277-282
    • /
    • 2003
  • 웹으로부터 유용한 정보를 얻기 위한 연구는 현재 많이 진행되고 있다. 본 논문에서는 특히 웹 로그 데이터의 희소성에 대한 문제 해결과 이를 통한 웹 사용자의 군집화 방안에 대하여 연구하였다. MCMC 방법의 베이지안 추론에 의한 결측치 대체 기법을 이용하여 웹 데이터의 희소성을 제거하였고, 주성분에 의한 산점도를 통하여 형상지도의 차원을 결정한 자기 조직화지도를 이용하여 웹 사용자의 군집화를 수행하였다. 제안 기법은 기존의 방법들에 비해 모형의 정확도와 빠른 학습 시간을 제공하여 주었다. KDD Cup 데이터를 이용한 실험을 통하여 제안 방법에 대한 문제 해결 절차 및 성능 평가를 객관적으로 확인하였다.

국가수문자료 통계처리 기준 개선방안 연구 (Study on the Improvement of Statistical Analysis Standard for Hydrologic Data)

  • 오창열;백창현;김휘린;정성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.452-452
    • /
    • 2011
  • 통계자료는 국가의 정책을 수립하는데 가장 기초가 되는 자료로서 국가 경영에 필수적인 인프라에 해당하며, 국가정책 수립의 근거자료로 활용하기 위해서는 생산되는 통계자료의 신뢰성이 담보되어야 한다. 신뢰성은 생산되는 통계자료의 정확성을 가장 기본으로 하며, 더 나아가서는 시기적절하게 통계자료를 생산하고 수요자 중심의 통계지표를 발굴 제시했을 때 통계자료로서 의미를 갖게 된다고 할 수 있다. 본 연구는 통계자료가 갖는 의미에 맞고 효과적인 통계자료를 생산하기 위하여 현재 발간중인 한국수문조사연보의 통계량과 산정기준, 적용성 및 활용방안에 대한 종합적인 검토를 통해 표준화된 통계처리 기준을 제시하고자 한다. 이를 위해 강수량과 수위, 유량측정성과 및 유량자료 통계량 44종에 대한 통계량별 결측치 처리기준과 활용성 및 결측치 처리방안에 대하여 검토로 통계값의 일관성 및 객관성이 확보될 수 있도록 개선방안을 마련하였다. 더불어 자연현상에 대한 명확한 해석이 가능하고, 기후변화에 따른 기왕의 극치자료와 비교검토가 용이하도록 통계량 표 개선과 이동시간 기준 최다강수량 등 신규 통계값에 대한 산정기준 방안을 제안하였다. 본 연구의 결과로 제시한 신규 통계량 정보를 추가적으로 제시하고, 표준화된 통계처리 기준에 따라 통계값을 산정할 경우 통계 자료의 일관성 및 객관성이 확보될 수 있을 것으로 기대된다.

  • PDF

전자의무기록 데이터에서의 적대적 생성 알고리즘 기반 결측값 대치 알고리즘 성능분석 (Performance Evaluation of an Imputation Method based on Generative Adversarial Networks for Electric Medical Record)

  • 조용연;정민영;황보율
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.879-881
    • /
    • 2019
  • 전자의무기록 (EMR)과 같은 의료 현장에서 수집되는 대용량의 데이터는 임상 해석적으로 잠재가치가 크고 활용도가 다양하나 결측값이 많아 희소성이 크다는 한계점이 있어 분석이 어렵다. 특히 EMR의 정보수집과정에서 발생하는 결측값은 무작위적이고 임의적이어서 분석 정확도를 낮추고 예측 모델의 성능을 저하시키는 주된 요인으로 작용하기 때문에, 결측치 대체는 필수불가결하다. 최근 통상적으로 활용되어지던 통계기반 알고리즘기반의 결측치 대체 알고리즘보다는 딥러닝 기술을 활용한 알고리즘들이 새로이 등장하고 있다. 본 논문에서는 Generative Adversarial Network를 기반한 최신 결측값 대치 알고리즘인 Generative Adversarial Imputation Nets을 적용하여 EMR에서의 성능을 분석해보고자 하였다.

시계열 데이터 결측치 처리 기술 동향 (Technical Trends of Time-Series Data Imputation)

  • 김에덴;고석갑;손승철;이병탁
    • 전자통신동향분석
    • /
    • 제36권4호
    • /
    • pp.145-153
    • /
    • 2021
  • Data imputation is a crucial issue in data analysis because quality data are highly correlated with the performance of AI models. Particularly, it is difficult to collect quality time-series data for uncertain situations (for example, electricity blackout, delays for network conditions). Thus, it is necessary to research effective methods of time-series data imputation. Many studies on time-series data imputation can be divided into 5 parts, including statistical based, matrix-based, regression-based, deep learning (RNN and GAN) based methodologies. This study reviews and organizes these methodologies. Recently, deep learning-based imputation methods are developed and show excellent performance. However, it is associated to some computational problems that make it difficult to use in real-time system. Thus, the direction of future work is to develop low computational but high-performance imputation methods for application in the real field.