• Title/Summary/Keyword: 결정적 라우팅

Search Result 159, Processing Time 0.023 seconds

Effects of directional transmission on clustering WSN (클러스터링 센서네트워크의 방향성 전송 효과)

  • Kim, Jeong-Mi;Zhang, Zhe-Hao;Kim, Chong-Gun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.258-268
    • /
    • 2012
  • Wireless Sensor Network(WSN) is constituted by low-cost and low-energy, So the most important issue is that the task of the sensor performs successfully by using less energy. In previous WSN, determination of the header and gathering sensor data solution by header give great affection to the performance of network. In this paper, we propose a Hybrid transmission method which considers the direction of data collections. In the proposed hybrid routing method, all of the sensors determine that transmission the data to the sink node directly or indirectly using the head node depend on the location of the head node in the cluster. The performance is compared with the LEACH(Low Energy Adaptive Clustering Hierarchy) by experimental analysis. The results show that the preposed method can reduce the communication distance and energy consumption by avoiding the detour direction of transmission of the data.

Performance Simulations of Wireless Grid Communication Networks

  • Abdulsam, Ibraheem Read;Kim, Se Mog;Rhee, Jong Myung
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.18-22
    • /
    • 2014
  • Satellite communications consist of communications between base stations of the ground and satellites. For efficient satellite communications, ground networks should be organically utilized. Grid networks are frequently used in and outside the country for wireless communications. The performance of wireless communications is determined by mobility, topography, and jamming signals. Therefore, continuous studies of grid networks are necessary for the utilization of next period satellite networks. Since military communications are used based on wireless systems, they can be considered as a sample of utilization of grid networks. Therefore, this paper presented the results of simulations conducted for the improvement of the performance of the grid networks used in military communications that employing the OSPF, a popular routing protocol for military applications. First we investigate the effects of changing the bit error rate (BER) and number of routers. Then we discuss the effects of maximum segment size (MSS) on network behavior and stability. In this way, we can determine the appropriate MSS for a grid network under various values of BER and number of routers. Such results can be also applied to commercial grid network evaluations.

A Solution for Congestion and Performance Enhancement using Dynamic Packet Bursting in Mobile Ad Hoc Networks (모바일 애드 혹 네트워크에서 패킷 버스팅을 이용한 혼잡 해결 및 성능향상 기법)

  • Kim, Young-Duk;Yang, Yeon-Mo;Lee, Dong-Ha
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.409-414
    • /
    • 2008
  • In mobile ad hoc networks, most of on demand routing protocols such as DSR and AODV do not deal with traffic load during the route discovery procedure. To solve the congestion and achieve load balancing, many protocols have been proposed. However, the existing load balancing schemes has only considered avoiding the congested route in the route discovery procedure or finding an alternative route path during a communication session. To mitigate this problem, we have proposed a new scheme which considers the packet bursting mechanism in congested nodes. The proposed packet bursting scheme, which is originally introduced in IEEE 802.11e QoS specification, is to transmit multiple packets right after channel acquisition. Thus, congested nodes can forward buffered packets promptly and minimize bottleneck situation. Each node begins to transmit packets in normal mode whenever its congested status is dissolved. We also propose two threshold values to define exact overloaded status adaptively; one is interface queue length and the other is buffer occupancy time. Through an experimental simulation study, we have compared and contrasted our protocol with normal on demand routing protocols and showed that the proposed scheme is more efficient and effective especially when network traffic is heavily loaded.

A design of Optimized Vehicle Routing System(OVRS) based on RSU communication and deep learning (RSU 통신 및 딥러닝 기반 최적화 차량 라우팅 시스템 설계)

  • Son, Su-Rak;Lee, Byung-Kwan;Sim, Son-Kweon;Jeong, Yi-Na
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.2
    • /
    • pp.129-137
    • /
    • 2020
  • Currently, The autonomous vehicle market is researching and developing four-level autonomous vehicles beyond the commercialization of three-level autonomous vehicles. Because unlike the level 3, the level 4 autonomous vehicle has to deal with an emergency directly, the most important aspect of a four-level autonomous vehicle is its stability. In this paper, we propose an Optimized Vehicle Routing System (OVRS) that determines the route with the lowest probability of an accident at the destination of the vehicle rather than an immediate response in an emergency. The OVRS analyzes road and surrounding vehicle information collected by The RSU communication to predict road hazards, and sets the route for the safer and faster road. The OVRS can improve the stability of the vehicle by executing the route guidance according to the road situation through the RSU on the road like the network routing method. As a result, the RPNN of the ASICM, one of the OVRS modules, was about 17% better than the CNN and 40% better than the LSTM. However, because the study was conducted in a virtual environment using a PC, the possibility of accident of the VPDM was not actually verified. Therefore, in the future, experiments with high accuracy on VPDM due to the collection of accident data and actual roads should be conducted in real vehicles and RSUs.

An Iterative Data-Flow Optimal Scheduling Algorithm based on Genetic Algorithm for High-Performance Multiprocessor (고성능 멀티프로세서를 위한 유전 알고리즘 기반의 반복 데이터흐름 최적화 스케줄링 알고리즘)

  • Chang, Jeong-Uk;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.115-121
    • /
    • 2015
  • In this paper, we proposed an iterative data-flow optimal scheduling algorithm based on genetic algorithm for high-performance multiprocessor. The basic hardware model can be extended to include detailed features of the multiprocessor architecture. This is illustrated by implementing a hardware model that requires routing the data transfers over a communication network with a limited capacity. The scheduling method consists of three layers. In the top layer a genetic algorithm takes care of the optimization. It generates different permutations of operations, that are passed on to the middle layer. The global scheduling makes the main scheduling decisions based on a permutation of operations. Details of the hardware model are not considered in this layer. This is done in the bottom layer by the black-box scheduling. It completes the scheduling of an operation and ensures that the detailed hardware model is obeyed. Both scheduling method can insert cycles in the schedule to ensure that a valid schedule is always found quickly. In order to test the performance of the scheduling method, the results of benchmark of the five filters show that the scheduling method is able to find good quality schedules in reasonable time.

A Link State Update Algorithm based on a Statistical Threshold for Guarantee of Bandwidth (대역폭 보장을 위한 통계적 임계값 기반의 링크 상태 갱신 알고리즘)

  • Lee, Jin-Ju;Chung, Min-Young;Lee, Tae-Jin;Choo, Hyun-Seung
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.395-401
    • /
    • 2008
  • In order to determine path(s) satisfied with bandwidth-guaranteed in the Internet, routers should have information on network topology and link state. The information is stored in Link State Database (LSDB) located in each router and managed. If link states information is changed, routers inform their neighbor of link state information changed by sending Link State Update (LSU) messages. However, there is trade-off between reflection of actual link state information on LSDB and cost of sending LSU messages. To find a bandwidth-guaranteed path effectively, it is important to decide whether LSU messages are sent or not for the change of link sate. In this paper, we propose a threshold-based LSU algorithm using statistic to effectively decide for sending LSU messages and evaluates its performance by intensive simulations. Simulation results show that the performance of proposed scheme is superior to the existing LSU schemes.

Bit-Map Based Hybrid Fast IP Lookup Technique (비트-맵 기반의 혼합형 고속 IP 검색 기법)

  • Oh Seung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.244-254
    • /
    • 2006
  • This paper presents an efficient hybrid technique to compact the trie indexing the huge forward table small enough to be stored into cache for speeding up IP lookup. It combines two techniques, an encoding scheme called bit-map and a controlled-prefix expanding scheme to replace slow memory search with few fast-memory accesses and computations. For compaction, the bit-map represents each index and child pointer with one bit respectively. For example, when one node denotes n bits, the bit-map gives a high compression rate by consumes $2^{n-1}$ bits for $2^n$ index and child link pointers branched out of the node. The controlled-prefix expanding scheme determines the number of address bits represented by all root node of each trie's level. At this time, controlled-prefix scheme use a dynamic programming technique to get a smallest trie memory size with given number of trie's level. This paper proposes standard that can choose suitable trie structure depending on memory size of system and the required IP lookup speed presenting optimal memory size and the lookup speed according to trie level number.

  • PDF

Development of Neural Network Based Cycle Length Design Model Minimizing Delay for Traffic Responsive Control (실시간 신호제어를 위한 신경망 적용 지체최소화 주기길이 설계모형 개발)

  • Lee, Jung-Youn;Kim, Jin-Tae;Chang, Myung-Soon
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.145-157
    • /
    • 2004
  • The cycle length design model of the Korean traffic responsive signal control systems is devised to vary a cycle length as a response to changes in traffic demand in real time by utilizing parameters specified by a system operator and such field information as degrees of saturation of through phases. Since no explicit guideline is provided to a system operator, the system tends to include ambiguity in terms of the system optimization. In addition, the cycle lengths produced by the existing model have yet been verified if they are comparable to the ones minimizing delay. This paper presents the studies conducted (1) to find shortcomings embedded in the existing model by comparing the cycle lengths produced by the model against the ones minimizing delay and (2) to propose a new direction to design a cycle length minimizing delay and excluding such operator oriented parameters. It was found from the study that the cycle lengths from the existing model fail to minimize delay and promote intersection operational conditions to be unsatisfied when traffic volume is low, due to the feature of the changed target operational volume-to-capacity ratio embedded in the model. The 64 different neural network based cycle length design models were developed based on simulation data surrogating field data. The CORSIM optimal cycle lengths minimizing delay were found through the COST software developed for the study. COST searches for the CORSIM optimal cycle length minimizing delay with a heuristic searching method, a hybrid genetic algorithm. Among 64 models, the best one producing cycle lengths close enough to the optimal was selected through statistical tests. It was found from the verification test that the best model designs a cycle length as similar pattern to the ones minimizing delay. The cycle lengths from the proposed model are comparable to the ones from TRANSYT-7F.

An Energy Efficient Unequal Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크에서의 에너지 효율적인 불균형 클러스터링 알고리즘)

  • Lee, Sung-Ju;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.783-790
    • /
    • 2009
  • The necessity of wireless sensor networks is increasing in the recent years. So many researches are studied in wireless sensor networks. The clustering algorithm provides an effective way to prolong the lifetime of the wireless sensor networks. The one-hop routing of LEACH algorithm is an inefficient way in the energy consumption of cluster-head, because it transmits a data to the BS(Base Station) with one-hop. On the other hand, other clustering algorithms transmit data to the BS with multi-hop, because the multi-hop transmission is an effective way. But the multi-hop routing of other clustering algorithms which transmits data to BS with multi-hop have a data bottleneck state problem. The unequal clustering algorithm solved a data bottleneck state problem by increasing the routing path. Most of the unequal clustering algorithms partition the nodes into clusters of unequal size, and clusters closer to the BS have small-size the those farther away from the BS. However, the energy consumption of cluster-head in unequal clustering algorithm is more increased than other clustering algorithms. In the thesis, I propose an energy efficient unequal clustering algorithm which decreases the energy consumption of cluster-head and solves the data bottleneck state problem. The basic idea is divided a three part. First of all I provide that the election of appropriate cluster-head. Next, I offer that the decision of cluster-size which consider the distance from the BS, the energy state of node and the number of neighborhood node. Finally, I provide that the election of assistant node which the transmit function substituted for cluster-head. As a result, the energy consumption of cluster-head is minimized, and the energy consumption of total network is minimized.

An Energy Aware Source Routing with Disjoint Multipath Selection for Wireless Sensor Networks (무선 센서네트워크에서 다중 경로 선정에 기반한 에너지 인식 소스 라우팅 프로토콜)

  • Hwang Do-youn;Lim Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.23-29
    • /
    • 2006
  • In wireless sensor networks(WSNs), it is crucial to maintain network connectivity as long as possible since nodes are battery-powered and unchange-able. We propose a new routing protocol called Energy Aware Source Routing(EASR) which can be efficient in respect of network lifetime and long-term connectivity. Our protocol is multipath source routing, only one path will be selected at the same time and each path has probability to be selected like as Energy Aware Routing(EAR) protocol. The route discovery procedure of EASR protocol is reformed from the route discovery procedure of Split Multipath Routing(SMR) protocol. However, there is the difference between SMR and EASR. In EASR, we define an overhearing ratio in order to reduce energy waste due to overhearing effect among each selected path. Thus, we can establish energy efficient multiple paths by making use of overhearing ratio. The simulation results are also demonstrated that our scheme increases in network lifetimes, and achieves reasonable packet latency time.