• Title/Summary/Keyword: 결정오차

Search Result 1,954, Processing Time 0.021 seconds

Spatial Autocorrelation and the Turnout of the Early Voting and Regular Voting: Analysis of the 21st General Election at Dong in Seoul (공간적 자기상관성과 관내사전투표와 본투표의 투표율: 제21대 총선 서울시 동별 분석)

  • Lim, Sunghack
    • Korean Journal of Legislative Studies
    • /
    • v.26 no.2
    • /
    • pp.113-140
    • /
    • 2020
  • This study is meaningful in that it is the first analysis of Korean elections using the concept of spatial autocorrelation. Spatial autocorrelation means that an event occurring in one location in space has a high correlation with an event occurring in the surrounding area. The voter turnout rate in the 21st general election of Seoul area was divided into the early-voting turnout and voting-day turnout, and the spatial pattern of the turnout was examined. Most of the previous studies were based on the unit of the precinct and personal data, but this study analyzed on the basis of the lower unit, Eup-myeon-dong, and analyzed using spatial data and aggregate data. Moran I index showed a fairly high spatial autocorrelation of 0.261 in the voting-day turnout, while the index of the early-voting turnout was low at 0.095, indicating that there was little spatial autocorrelation despite statistical significance. The voting-day turnout, which showed strong spatial autocorrelation, was compared and analyzed using the OLS regression model and the spatial statistics model. In the general regression model, the coefficient of determination R2 rose from 0.585261 to 0.656631 in the spatial error model, showing an increase in explanatory power of about 7 percentage points. This means that the spatial statistical model has high explanatory power. The most interesting result is the relationship between the early-voting turnout and the voting-day turnout. The higher the early-voting turnout is, the lower the voting-day turnout is. When the early-voing turnout increases by about 2%, the voting-day turnout drops by about 1%. In this study, the variables affecting the early-voting turnout and the voting-day turnout are very different. This finding is different from the previous researches.

Semi-Quantitative Analysis for Determining the Optimal Threshold Value on CT to Measure the Solid Portion of Pulmonary Subsolid Nodules (폐의 아고형결절에서 침습적 병소를 검출하기 위한 반-정량 분석을 통한 최적의 CT 임계 값 결정)

  • Sunyong Lee;Da Hyun Lee;Jae Ho Lee;Sungsoo Lee;Kyunghwa Han;Chul Hwan Park;Tae Hoon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.3
    • /
    • pp.670-681
    • /
    • 2021
  • Purpose This study aimed to investigate the optimal threshold value in Hounsfield units (HU) on CT to detect the solid components of pulmonary subsolid nodules using pathologic invasive foci as reference. Materials and Methods Thin-section non-enhanced chest CT scans of 25 patients with pathologically confirmed minimally invasive adenocarcinoma were retrospectively reviewed. On CT images, the solid portion was defined as the area with higher attenuation than various HU thresholds ranging from -600 to -100 HU in 50-HU intervals. The solid portion was measured as the largest diameter on axial images and as the maximum diameter on multiplanar reconstruction images. A linear mixed model was used to evaluate bias in each threshold by using the pathological size of invasive foci as reference. Results At a threshold of -400 HU, the biases were lowest between the largest/maximum diameter of the solid portion of subsolid nodule and the size of invasive foci of the pathological specimen, with 0.388 and -0.0176, respectively. They showed insignificant difference (p = 0.2682, p = 0.963, respectively) at a threshold of -400 HU. Conclusion For quantitative analysis, -400 HU may be the optimal threshold to define the solid portion of subsolid nodules as a surrogate marker of invasive foci.

An Iterative, Interactive and Unified Seismic Velocity Analysis (반복적 대화식 통합 탄성파 속도분석)

  • Suh Sayng-Yong;Chung Bu-Heung;Jang Seong-Hyung
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 1999
  • Among the various seismic data processing sequences, the velocity analysis is the most time consuming and man-hour intensive processing steps. For the production seismic data processing, a good velocity analysis tool as well as the high performance computer is required. The tool must give fast and accurate velocity analysis. There are two different approches in the velocity analysis, batch and interactive. In the batch processing, a velocity plot is made at every analysis point. Generally, the plot consisted of a semblance contour, super gather, and a stack pannel. The interpreter chooses the velocity function by analyzing the velocity plot. The technique is highly dependent on the interpreters skill and requires human efforts. As the high speed graphic workstations are becoming more popular, various interactive velocity analysis programs are developed. Although, the programs enabled faster picking of the velocity nodes using mouse, the main improvement of these programs is simply the replacement of the paper plot by the graphic screen. The velocity spectrum is highly sensitive to the presence of the noise, especially the coherent noise often found in the shallow region of the marine seismic data. For the accurate velocity analysis, these noise must be removed before the spectrum is computed. Also, the velocity analysis must be carried out by carefully choosing the location of the analysis point and accuarate computation of the spectrum. The analyzed velocity function must be verified by the mute and stack, and the sequence must be repeated most time. Therefore an iterative, interactive, and unified velocity analysis tool is highly required. An interactive velocity analysis program, xva(X-Window based Velocity Analysis) was invented. The program handles all processes required in the velocity analysis such as composing the super gather, computing the velocity spectrum, NMO correction, mute, and stack. Most of the parameter changes give the final stack via a few mouse clicks thereby enabling the iterative and interactive processing. A simple trace indexing scheme is introduced and a program to nike the index of the Geobit seismic disk file was invented. The index is used to reference the original input, i.e., CDP sort, directly A transformation techinique of the mute function between the T-X domain and NMOC domain is introduced and adopted to the program. The result of the transform is simliar to the remove-NMO technique in suppressing the shallow noise such as direct wave and refracted wave. However, it has two improvements, i.e., no interpolation error and very high speed computing time. By the introduction of the technique, the mute times can be easily designed from the NMOC domain and applied to the super gather in the T-X domain, thereby producing more accurate velocity spectrum interactively. The xva program consists of 28 files, 12,029 lines, 34,990 words and 304,073 characters. The program references Geobit utility libraries and can be installed under Geobit preinstalled environment. The program runs on X-Window/Motif environment. The program menu is designed according to the Motif style guide. A brief usage of the program has been discussed. The program allows fast and accurate seismic velocity analysis, which is necessary computing the AVO (Amplitude Versus Offset) based DHI (Direct Hydrocarn Indicator), and making the high quality seismic sections.

  • PDF

Development of Analytical Method for Detection of Fungicide Validamycin A Residues in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살균제 Validamycin A의 시험법 개발)

  • Park, Ji-Su;Do, Jung-Ah;Lee, Han Sol;Park, Shin-min;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Cho, Myong-Shik;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.22-29
    • /
    • 2019
  • Validamycin A is an aminoglycoside fungicide produced by Streptomyces hygroscopicus that inhibits trehalase. The purpose of this study was to develop a method for detecting validamycin A in agricultural samples to establish MRL values for use in Korea. The validamycin A residues in samples were extracted using methanol/water (50/50, v/v) and purified with a hydrophilic-lipophilic balance (HLB) cartridges. The analyte was quantified and confirmed by liquid chromatograph-tandem mass spectrometer (LC-MS/MS) in positive ion mode using multiple reaction monitoring (MRM). Matrix-matched calibration curves were linear over the calibration ranges (0.005~0.5 ng) into a blank extract with $R^2$ > 0.99. The limits of detection and quantification were 0.005 and 0.01 mg/kg, respectively. For validation validamycin A, recovery studies were carried out three different concentration levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n = 5) with five replicates at each level. The average recovery range was from 72.5~118.3%, with relative standard deviation (RSD) less than 10.3%. All values were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the NIFDS (National Institute of Food and Drug Safety) guideline (2016). Therefore, the proposed analytical method is accurate, effective and sensitive for validamycin A determination in agricultural commodities.