비정질 실리콘 태양전지 대신에 열화가 더 적은 프로터결정 실리콘(pc-Si:H)을 상층전지 흡수층으로 사용한 고효율 실리콘계 적층형(pc-Si:H/$\mu$c-Si:H) 박막 태양전지를 개발하였다. 우선, 높은 전도도와 넓은 에너지 밴드갭 특성을 갖는 p-a-SiC:H 박막을 개발하였고, p/i 계면의 특성 향상을 위해 p-nc-SiC:H 완충층을 개발하였다. 프로터결정 실리콘 다층막을 제작하고 FTIR, 평면 TEM, 단면 TEM 측정을 통해 프로터결정 실리콘 다층막의 우수한 열화 특성의 원인을 규명하였다. 적층형 태양전지의 성능향상을 위해 n-p-p 구조의 터널접합을 제안, 제작하고 특성을 분석하였으며, pc-Si:H/a-Si:H 적층형 태양전지에 적용하여 성능향상을 이루었다. 양질의 하층전지용 마이크로결정 실리콘 박막을 증착하기 위하여 광CVD법과 플라즈마CVD법을 결합한 2단계 마이크로결정 실리콘 증착법을 개발하였다.
박막 태양전지 기술은 현재 가장 큰 시장점유율을 보이고 있는 결정질 Si 태양전지의 차세대 후보로서 큰 관심을 받고 있다. 결정질 Si 태양전지보다 높은 효율로서, 저가로 생산할 수 있는 수준을 목표로 하여 $Cu(In,Ga)Se_2$ (CIGS) 를 비롯한 다양한 종류의 박막 태양전지들이 개발되고 있는데, 이 글에서는 최근에 범용성 초저가 박막 태양전지로 각광을 받고 있는 kesterite 박막 태양전지에 대해서 살펴보기로 한다. 가장 많이 연구되는 kesterite구조의 $Cu_2ZnSn(S,Se)_4$ (CZT(S,Se)) 박막 태양전지는 차세대 태양전지의 유력 후보군인 화합물태양전지 중에서 CdTe와 CIGS 그리고 새롭게 떠오르고 있는 페로브스카이트 등에 비해 범용 무독성 원소를 광흡수층으로 사용한다는 장점을 가지고 있지만 아직까지는 이들보다 효율이 낮아 상용화하기에는 좀 더 시간이 필요할 것으로 판단된다. CZT(S,Se)계 박막 태양전지의 기본적인 물성, 공정, 분석법 등을 알아보고 고효율을 달성하는 방법에 대하여 제시하고자 한다. 공정에 대한 상세한 최근 동향과 설명은 최근 한국공업화학회 소식지에 실린 강진규 박사의 리뷰논문을 참고하였다.
Kim, Hye-Ran;Kim, Sam-Su;Lee, Yu-Na;Kim, Yong-Bae;Park, Seung-Il
Proceedings of the Korean Vacuum Society Conference
/
2013.02a
/
pp.683-683
/
2013
박막태양전지의 일종인 CIGS 태양전지는 직접천이형 반도체로 광흡수계수가 $1{\times}10^5cm^{-1}$로 매우 높고, 전기광학적 안정성이 우수하여 실리콘 결정질 태양전지를 대체할 고효율 태양전지로 각광받고 있다. CIGS 태양전지는 광흡수층 공정방법에 따라 다양한 결정구조 및 효율 차이가 나타난다. 본 실험에서는 Sputtering방법으로 금속전구체를 증착하고, Sequential process를 이용하여 고온에서 셀렌화 열처리를 수행하였다. Soda-lime glass 기판에 배면전극으로 Mo를 증착하고, 1단계로 CuIn0.7Ga0.3 조성비의 타겟을 이용하여 Sputtering법으로 $1.0{\sim}1.2{\mu}m$두께의 CIG 전구체를 증착하였다. 2단계로 CIG 전구체에 분자빔증착기를 이용하여 Se를 증착하고, 열처리를 통하여 CIGS 화합물 구조의 박막을 형성시켰다.증착된 CIGS 박막은 광전자분광분석기로 원소의 화학적 결합상태를 확인하고, in-situ 엑스선회절분석을 통해 Se층의 증착두께와 열처리 온도 변화에 따른 CIGS 층의 결정구조 및 결정화도 변화를 분석하였다.
[ $CulnSe2$ ]계 화합물은 직접천이형 반도체로 광흡수계수가 매우 높아 박막형 태양전지 제조에 매우 유리하다. 또한 화학적으로 안정하며 Ga, Al 등을 첨가하면 에너지 금지대폭을 조절할 수 있어 Wide Bandgap 태양전지 및 탠덤구조 태양전지를 제조하기에도 용이하다. CIS 물질에서 In을 $20-30\%$ 정도 치환한 $Cu(In,\;Ga)Se_2(CIGS)$ 태양전지의 경우 19.5%의 세계 최고 효율을 보고하고 있으며 이는 다결정 실리콘 태양전지의 효율과 비슷한 수준이다. 본 연구에서는 동시 질공증발법을 이용하여 증착한 CIGS 박막 및 $CuGaSe_2(CGS)$ 박막을 이용하여 태양전지를 제조하였다. 공정의 재현성 및 결정립계가 큰 광흡수층 제조를 위하여 실시간 기판 온도 모니터링 시스템을 도입하였으며 버퍼층으로는 용액성장한 CdS 박막을 사용하였다. SLG/MO/CIGS(CGS)/CdS/ZnO/Al 구조의 태양전지를 제조하여 면적 $0.5cm^2$에서 각각 $17\%(CIGS)$와 $7\%(CGS)$의 효율을 얻었다.
Kim, Daesung;Kim, Chaewoong;Kim, Daekyong;Lee, Duckhoon;Kim, Taesung
한국신재생에너지학회:학술대회논문집
/
2010.11a
/
pp.52-52
/
2010
CIS(CuInSe2)계 화합물 태양전지는 높은 광흡수계수와 열적 안정성으로 고효율 태양전지 제조가 가능하여 태양전지용 광흡수층으로 매우 이상적이다. 미국 NREL에서는 이러한 CIGS 태양전지를 Co-evaporation 방법으로 제조 20%이상의 에너지 변환 효율을 달성하였다고 보고하였다. CIGS 태양전지의 경우 기존의 유리 기판 대신 유연한 철강 기판을 사용해 태양전지를 flexible하게 제조 할 수 있다는 장점이 있다. 이러한 flexible 태양전지의 경우 기존의 rigid 태양전지의 적용분야 뿐만 아니라 BIPV, 선박, 장난감, 군용, 자동차등 더욱더 많은 분야에 활용이 가능하다. 하지만 flexible 태양전지에 사용되는 철강기판의 경우 기존의 유리 기판인 SLG에 함유되어 있는 Na이 첨가되어 있지 않아 별도의 Na 첨가가 필요하다. Na은 CIGS 광흡수층의 결정을 증가 시키며 태양전지의 전기적 특성을 향상시킨다. 이러한 Na이 없는 경우 효율이 감소한다. 따라서 flexible 태양전지 개발을 위해서는 Na 첨가에 대한 연구가 필수적이다. 본 연구에서는 Na의 증착 순서를 변화시켜서 CIGS 증착 전, 동시증착, CIGS 증착 후로 나누어 CIGS 광흡수층 결정성의 변화를 알아보고자 한다. Na의 두께를 5nm에서 500nm 까지 단계 별로 나누어 실험을 실시하였다. 이때 CIGS 광흡수층은 미국의 NREL과 같은 3 stage 방식을 이용하였다. 1st stage의 시간은 15분으로 고정하였으며 기판온도는 약 $300^{\circ}C$로 고정 하였다. 2nd stage는 실시간 온도 감지 장치를 이용하여 Cu와 In+Ga의 조성비가 1:1이 되는 시간을 기준으로 Cu의 조성을 30%더 높게 조절하였으며 기판 온도는 약 $640^{\circ}C$로 고정 후 실험을 실시하였다. 3rd stage의 경우 Cu poor 조성으로 조절하기 위해 모든 조건을 10분으로 고정 후 실험을 실시하였다. 기판은 Na의 영향만을 비교하기위하여 Na이 첨가되어있지 않은 corning glass를 사용하였다. 후면 전극으로 약 $1{\mu}m$ 두께의 Mo을 DC Sputtering 방법을 이용하여 증착 하였다. 각각의 Na 두께에 따른 CIGS 광흡수층의 특성을 분석하기 위해 FE-SEM, XRD 분석을 실시하였다.
Proceedings of the Korean Vacuum Society Conference
/
2010.08a
/
pp.319-319
/
2010
칼코젠계 태양전지의 광흡수층으로 사용되는 CuInSe2은 직접천이형 반도체로 광흡수계수가 $1{\times}105cm-1$로 매우 높고, 전기광학적 안정성이 우수하여 실리콘 결정질 태양전지를 대체할 고효율 태양전지로 각광받고 있다. 광흡수층의 밴드갭 에너지가 증가하면 태양전지의 개방전압(Voc)이 증가하여 광변환 효율을 향상시킬 수 있으므로, CuInSe2에서 In의 일부를 Ga으로 치환하여 에너지 밴드갭의 변화를 주는 연구가 많이 진행되고 있다. 그러나 화합물내의 Ga 조성비가 증가하면 단락전류(Jsc), 충진률(fill factor)이 낮아져 태양전지 효율을 저하시키게 되므로 CIGS 박막의 적절한 화합물 조성비를 갖도록 최적조건을 확립하는 것이 매우 중요하다. 본 실험에서는 광흡수층 형성을 위해 Sputtering법으로 금속 전구체를 증착하고, 고온에서 셀렌화 열처리를 수행하는 Sequential process(2단계 증착법)를 이용하였다. soda-lime glass 기판에 Back contact으로 Mo를 증착하고, 1단계로 CuIn0.7Ga0.3 조성비의 타겟을 이용하여 Sputtering법으로 $0.5{\sim}2{\mu}m$ 두께의 CIG 전구체를 증착하였다. 2단계로 CIG 전구체의 셀렌화열처리를 통하여 CIGS 화합물 구조의 박막을 형성시켰다. 이때 형성된 CIGS 화합물 박막의 두께는 동일하게 함으로써, 열처리온도에 의한 박막의 구조변화를 비교하였다. 증착된 CIGS 박막은 고온 엑스선회절분석을 통해 증착 두께와 온도 변화에 따른 CIGS 층의 구조 변화를 확인하고, 동일한 증착조건으로 Buffer layer, Window layer, Grid 전극을 형성하여 태양전지셀 특성을 평가함으로써 CIGS 태양전지 광흡수층의 결정구조에 따른 광변환 효율을 비교하였다.
Cu계$I-III-VI_2$화합물은 직접천이형 반도체로 광흡수계수가 매우 높아 박막형 태양전지 제조에 매우 유리하다 또한 화학적으로 안정하며 Ga, A1등을 첨가하면 에너지 금지대폭을 조절할 수 있어 Wide Bandgap 태양전지 및 탠덤구조 태양전지를 제조하기에도 용이하다. $CuInSe_2(CIS)$ 물질에서 In을 $20-30\%$ 정도 치환한 $Cu(In,\;Ga)Se_2(CIGS)$ 태양전지의 경우 $19.5\%$의 세계 최고 효율을 보고하고 있으며 이는 다결정 실리콘 태양전지의 효율과 비슷한 수준이다. 본 연구에서는 동시 진공증발법을 이용하여 증착한 CIGS 박막 및 $CuGaSe_2(CGS)$ 박막을 이용하여 태양전지를 제조하였다. 공정의 재현성 및 결정립계가 큰 광흡수층 제조를 위하여 실시간 기판 온도 모니터링 시스템을 도입하였으며 버퍼층으로는 용액성장한 CdS 박막을 사용하였다. SLG/MO/CIGS(CGS)/CdS/ZnO/Al구조의 태양전지를 제조하여 면적 $0.5cm^2$에서 각각 $15\%$(CIGS)와 $7\%(CGS)$의 효율을 얻었다.
Cu계 $I-III-VI_2$화합물은 직접천이형 반도체로 광흡수계수가 매우 높아 박막형 태양전지 제조에 매우 유리하다. 또한 화학적으로 안정하며 Ga, Al 등을 첨가하면 에너지 금지대폭을 조절할 수 있어 Wide Bandgap 태양전지 및 탠덤구조 태양전지를 제조하기에도 용이하다 $CulnSe_2(CIS)$ 물질에서 In을 20-30% 정도 치환한 $Cu(In,Ga)Se_2(CIGS)$ 태양전지의 경우 19.5%의 세계 최고 효율을 보고하고 있으며 이는 다결정 실리콘 태양전지의 효율과 비슷한 수준이다. 본 연구에서는 동시 진공증발법을 이용하여 증착한 CIGS 박막을 이용하여 태양전지를 제조하였다. 공정의 재현성 및 결정립계가 큰 광흡수층 제조를 위하여 실시간 기판온도 모니터링 시스템을 도입하였으며 버퍼충으로는 용액성장한 CdS 박막을 사용하였다. SLG/MO/CIGS(CGS)/CdS/ZnO/Al 구조의 태양전지를 제조하여 면적 $0.5cm^2$에서 각각 17.5%의 효율을 얻었다.
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.428-428
/
2016
Copper indium sulfide (selenide) (CuIn(S,Se)2,CISSe)는 1.0~1.5 eV의 Direct band gap과 105 cm-1이 넘는 큰 광 흡수 계수를 가지고 있어 박막 태양전지의 흡수층으로써 연구되어 왔다. 최근 대량생산 및 저가 공정에 용이하다는 측면에서 용액 공정 기반 CISSe 태양전지 연구가 크게 주목 받고 있다. 용액공정 기반 중 하이드라진을 사용 한 경우 매우 높은 효율을 기록하였으나, 하이드라진 자체의 유독성과 폭발성 때문에 분위기 제어가 필요하고 여전히 저가화 및 대면적 제작에 한계가 있다. 따라서 알코올 솔젤 기반 CISSe 태양전지 제작 연구가 많이 진행되었으나, 결정립 성장 및 칼코겐 원자를 공급하기 위해 불가피하게 황화/셀렌화 후속 열처리 공정을 요구한다. 후속 열처리 공정은 폭발성의 황화수소/황화셀레늄 기체 분위기 제어와 고가의 장비를 필요로 한다. 본 연구에서는 매우 안정적이며 저가 용매인 물과 아민계 첨가제를 이용하여 Cu, In 전구체와 S, Se 이 포함된 Cu-In-S 잉크와 Se잉크를 제작하였다. 잉크 내에 S, Se을 첨가 함으로써 추가적인 후속공정 없이 비활성 가스 분위기에서 고품질의 CISSe 박막 제작을 가능케 하였다. 또한 Se 잉크 증착 횟수에 따른 결정 구조, 광학적 성질의 차이에 주목하였다. 따라서 수계 잉크를 대기 중에서 스핀코팅으로 박막을 제작한 후, Hot plate에서 건조하여 균일한 박막을 제조하고, 제작된 박막을 tube furnace에서 환원 분위기 및 비활성 가스 분위기에서 열처리 진행하여 $1.3{\mu}m$ 두께의 고품질의 CISSe 흡수층을 제작하였다. 이러한 흡수층에 대해 XRD, SEM, EDS 분석을 진행하여, 결정성, 미세구조, 및 조성을 확인하였으며, 제작된 흡수층 위에 버퍼층/투명전극층을 차례로 증착하여 CISSe 태양전지를 제작하여 셀 성능 및 양자 효율 특성을 파악하였다. 또한 액상 Raman 분석을 통해 결정립 성장 과정 메커니즘을 제시하였다.
Proceedings of the Korean Vacuum Society Conference
/
2012.08a
/
pp.278-279
/
2012
최근 들어 세계적인 고유가 행진과 화석연료 고갈에 대응하기 위하여 대체 에너지원 발굴에 대한 필요성이 높아지고 있다. 그 중 CIGS 박막 태양전지는 미래 신재생 에너지 자원의 가장 유망한 후보군 중 하나이다. 기존의 Si 기반의 태양전지의 경우 시간경과에 따른 효율 저하, 높은 재료비, 복잡한 공정으로 인하여 대량생산이 힘든 단점을 가지고 있다. 반면 박막 태양전지의 경우 생산 원가를 낮출 수 있는 태양전지 제조기술로서는 2세대 태양전지로 불리우며, 에너지 변환 효율과 생산 원가에서 우월성을 가진다. 그리고 이러한 CIGS 박막 태양전지를 단일 CIGS 타겟을 이용하여 스퍼터링 공정으로 제작하면 기존에 사용되었던 동시 증발법에 비해서 간단하고 대면적 코팅 및 대량 생산이 가능하다. 본 연구에서 사용된 기판으로는 $25{\times}25mm$ 크기의 Soda Lime Glass (SLG) 위에 DC 마그네트론 스퍼터링 공정으로 Mo가 $1{\mu}m$ 증착된 시편을 이용하여, 2 inch 단일 CIGS 타겟 (MATERION, CIGS Target 25-17.5-7.5-50 at%)을 기판 가열하여 증착하였다. RF 파워는 80 W, 기판 온도는 RT, 100, 200, 300, $400^{\circ}C$로 가열 후 증착하였고, CIGS 박막의 두께는 약 $1{\mu}m$로 일정하게 하였다. CIGS/Mo 박막의 파워별 미세구조 분석을 위해 X-ray Diffraction (XRD, BRUKER GADDS)로 측정하였으며, 박막의 결정립 크기를 확인하기 위해 Field Emission Scanning Electron Microscopy (FE-SEM, HITACHI)을 사용하여 측정하였다. 조건별 박막의 조성 분석 및 표면조도는 Energy Dispersive X-ray Spectroscopy (EDS, HORIBA 7395-H)와 Atomic Force Microscopy (AFM)을 이용하여 각각 평가하였다. 마지막으로 광학적 특성을 평가하고 박막의 밴드갭 에너지를 계산하기 위해서 190 nm에서 1,100 nm의 영역 대에서 자외선 광학 측정기(UV-Vis, HP-8453, AGLIENT)로 투과도를 측정하여 밴드갭 에너지를 계산하였다. 증착된 CIGS 박막은 기판 온도가 증가함에 따라 결정립 크기가 커지는 경향을 보였다. 이는 기판 상에 도달한 스퍼터 원자의 확산 에너지 증가로 인한 것으로 생각되어진다. 또한, 기판온도에 따른 결정립 성장 변화는 4성분계의 박막의 조성 및 핵생성 밀도와 관련되어 설명되어질 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.