• Title/Summary/Keyword: 결정계 태양전지

Search Result 41, Processing Time 0.035 seconds

저가 고효율 실리콘계 (protocrystalline Si/$\mu$c-Si:H) 적층형 박막 태양전지 개발

  • Im, Goeng-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.191-202
    • /
    • 2005
  • 비정질 실리콘 태양전지 대신에 열화가 더 적은 프로터결정 실리콘(pc-Si:H)을 상층전지 흡수층으로 사용한 고효율 실리콘계 적층형(pc-Si:H/$\mu$c-Si:H) 박막 태양전지를 개발하였다. 우선, 높은 전도도와 넓은 에너지 밴드갭 특성을 갖는 p-a-SiC:H 박막을 개발하였고, p/i 계면의 특성 향상을 위해 p-nc-SiC:H 완충층을 개발하였다. 프로터결정 실리콘 다층막을 제작하고 FTIR, 평면 TEM, 단면 TEM 측정을 통해 프로터결정 실리콘 다층막의 우수한 열화 특성의 원인을 규명하였다. 적층형 태양전지의 성능향상을 위해 n-p-p 구조의 터널접합을 제안, 제작하고 특성을 분석하였으며, pc-Si:H/a-Si:H 적층형 태양전지에 적용하여 성능향상을 이루었다. 양질의 하층전지용 마이크로결정 실리콘 박막을 증착하기 위하여 광CVD법과 플라즈마CVD법을 결합한 2단계 마이크로결정 실리콘 증착법을 개발하였다.

  • PDF

Kesterite 태양전지소자의 연구 현황과 향후 전망

  • Kim, Ju-Ran;Jo, Will-Ryeom
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.3 no.3
    • /
    • pp.18-31
    • /
    • 2017
  • 박막 태양전지 기술은 현재 가장 큰 시장점유율을 보이고 있는 결정질 Si 태양전지의 차세대 후보로서 큰 관심을 받고 있다. 결정질 Si 태양전지보다 높은 효율로서, 저가로 생산할 수 있는 수준을 목표로 하여 $Cu(In,Ga)Se_2$ (CIGS) 를 비롯한 다양한 종류의 박막 태양전지들이 개발되고 있는데, 이 글에서는 최근에 범용성 초저가 박막 태양전지로 각광을 받고 있는 kesterite 박막 태양전지에 대해서 살펴보기로 한다. 가장 많이 연구되는 kesterite구조의 $Cu_2ZnSn(S,Se)_4$ (CZT(S,Se)) 박막 태양전지는 차세대 태양전지의 유력 후보군인 화합물태양전지 중에서 CdTe와 CIGS 그리고 새롭게 떠오르고 있는 페로브스카이트 등에 비해 범용 무독성 원소를 광흡수층으로 사용한다는 장점을 가지고 있지만 아직까지는 이들보다 효율이 낮아 상용화하기에는 좀 더 시간이 필요할 것으로 판단된다. CZT(S,Se)계 박막 태양전지의 기본적인 물성, 공정, 분석법 등을 알아보고 고효율을 달성하는 방법에 대하여 제시하고자 한다. 공정에 대한 상세한 최근 동향과 설명은 최근 한국공업화학회 소식지에 실린 강진규 박사의 리뷰논문을 참고하였다.

  • PDF

CIGS 광흡수층의 Selenization 공정방법에 따른 구조 변화 연구

  • Kim, Hye-Ran;Kim, Sam-Su;Lee, Yu-Na;Kim, Yong-Bae;Park, Seung-Il
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.683-683
    • /
    • 2013
  • 박막태양전지의 일종인 CIGS 태양전지는 직접천이형 반도체로 광흡수계수가 $1{\times}10^5cm^{-1}$로 매우 높고, 전기광학적 안정성이 우수하여 실리콘 결정질 태양전지를 대체할 고효율 태양전지로 각광받고 있다. CIGS 태양전지는 광흡수층 공정방법에 따라 다양한 결정구조 및 효율 차이가 나타난다. 본 실험에서는 Sputtering방법으로 금속전구체를 증착하고, Sequential process를 이용하여 고온에서 셀렌화 열처리를 수행하였다. Soda-lime glass 기판에 배면전극으로 Mo를 증착하고, 1단계로 CuIn0.7Ga0.3 조성비의 타겟을 이용하여 Sputtering법으로 $1.0{\sim}1.2{\mu}m$두께의 CIG 전구체를 증착하였다. 2단계로 CIG 전구체에 분자빔증착기를 이용하여 Se를 증착하고, 열처리를 통하여 CIGS 화합물 구조의 박막을 형성시켰다.증착된 CIGS 박막은 광전자분광분석기로 원소의 화학적 결합상태를 확인하고, in-situ 엑스선회절분석을 통해 Se층의 증착두께와 열처리 온도 변화에 따른 CIGS 층의 결정구조 및 결정화도 변화를 분석하였다.

  • PDF

A Study on the Cu-based $I-III-VI_2$ Compound Thin Film Solar Cells ($CulnSe2$계 화합물 박막 태양전지 연구)

  • Yun JaeHo;Ahn SeJin;Kim SeokKi;Lee JeongChul;Song JinSoo;Kim Ki Hwan;Ahn Byung Tae;Yoon KyungHoon
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.6-10
    • /
    • 2005
  • [ $CulnSe2$ ]계 화합물은 직접천이형 반도체로 광흡수계수가 매우 높아 박막형 태양전지 제조에 매우 유리하다. 또한 화학적으로 안정하며 Ga, Al 등을 첨가하면 에너지 금지대폭을 조절할 수 있어 Wide Bandgap 태양전지 및 탠덤구조 태양전지를 제조하기에도 용이하다. CIS 물질에서 In을 $20-30\%$ 정도 치환한 $Cu(In,\;Ga)Se_2(CIGS)$ 태양전지의 경우 19.5%의 세계 최고 효율을 보고하고 있으며 이는 다결정 실리콘 태양전지의 효율과 비슷한 수준이다. 본 연구에서는 동시 질공증발법을 이용하여 증착한 CIGS 박막 및 $CuGaSe_2(CGS)$ 박막을 이용하여 태양전지를 제조하였다. 공정의 재현성 및 결정립계가 큰 광흡수층 제조를 위하여 실시간 기판 온도 모니터링 시스템을 도입하였으며 버퍼층으로는 용액성장한 CdS 박막을 사용하였다. SLG/MO/CIGS(CGS)/CdS/ZnO/Al 구조의 태양전지를 제조하여 면적 $0.5cm^2$에서 각각 $17\%(CIGS)$$7\%(CGS)$의 효율을 얻었다.

  • PDF

Influence of Na incorporation on the Morphology of CIGS absorber layers (Na 첨가량에 따른 CIGS 광흡수층의 결정성 변화에 관한 연구)

  • Kim, Daesung;Kim, Chaewoong;Kim, Daekyong;Lee, Duckhoon;Kim, Taesung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.52-52
    • /
    • 2010
  • CIS(CuInSe2)계 화합물 태양전지는 높은 광흡수계수와 열적 안정성으로 고효율 태양전지 제조가 가능하여 태양전지용 광흡수층으로 매우 이상적이다. 미국 NREL에서는 이러한 CIGS 태양전지를 Co-evaporation 방법으로 제조 20%이상의 에너지 변환 효율을 달성하였다고 보고하였다. CIGS 태양전지의 경우 기존의 유리 기판 대신 유연한 철강 기판을 사용해 태양전지를 flexible하게 제조 할 수 있다는 장점이 있다. 이러한 flexible 태양전지의 경우 기존의 rigid 태양전지의 적용분야 뿐만 아니라 BIPV, 선박, 장난감, 군용, 자동차등 더욱더 많은 분야에 활용이 가능하다. 하지만 flexible 태양전지에 사용되는 철강기판의 경우 기존의 유리 기판인 SLG에 함유되어 있는 Na이 첨가되어 있지 않아 별도의 Na 첨가가 필요하다. Na은 CIGS 광흡수층의 결정을 증가 시키며 태양전지의 전기적 특성을 향상시킨다. 이러한 Na이 없는 경우 효율이 감소한다. 따라서 flexible 태양전지 개발을 위해서는 Na 첨가에 대한 연구가 필수적이다. 본 연구에서는 Na의 증착 순서를 변화시켜서 CIGS 증착 전, 동시증착, CIGS 증착 후로 나누어 CIGS 광흡수층 결정성의 변화를 알아보고자 한다. Na의 두께를 5nm에서 500nm 까지 단계 별로 나누어 실험을 실시하였다. 이때 CIGS 광흡수층은 미국의 NREL과 같은 3 stage 방식을 이용하였다. 1st stage의 시간은 15분으로 고정하였으며 기판온도는 약 $300^{\circ}C$로 고정 하였다. 2nd stage는 실시간 온도 감지 장치를 이용하여 Cu와 In+Ga의 조성비가 1:1이 되는 시간을 기준으로 Cu의 조성을 30%더 높게 조절하였으며 기판 온도는 약 $640^{\circ}C$로 고정 후 실험을 실시하였다. 3rd stage의 경우 Cu poor 조성으로 조절하기 위해 모든 조건을 10분으로 고정 후 실험을 실시하였다. 기판은 Na의 영향만을 비교하기위하여 Na이 첨가되어있지 않은 corning glass를 사용하였다. 후면 전극으로 약 $1{\mu}m$ 두께의 Mo을 DC Sputtering 방법을 이용하여 증착 하였다. 각각의 Na 두께에 따른 CIGS 광흡수층의 특성을 분석하기 위해 FE-SEM, XRD 분석을 실시하였다.

  • PDF

Crystal structure analysis of CIGS solar cell absorber by using in-situ XRD

  • Kim, Hye-Ran;Kim, Yong-Bae;Park, Seung-Il
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.319-319
    • /
    • 2010
  • 칼코젠계 태양전지의 광흡수층으로 사용되는 CuInSe2은 직접천이형 반도체로 광흡수계수가 $1{\times}105cm-1$로 매우 높고, 전기광학적 안정성이 우수하여 실리콘 결정질 태양전지를 대체할 고효율 태양전지로 각광받고 있다. 광흡수층의 밴드갭 에너지가 증가하면 태양전지의 개방전압(Voc)이 증가하여 광변환 효율을 향상시킬 수 있으므로, CuInSe2에서 In의 일부를 Ga으로 치환하여 에너지 밴드갭의 변화를 주는 연구가 많이 진행되고 있다. 그러나 화합물내의 Ga 조성비가 증가하면 단락전류(Jsc), 충진률(fill factor)이 낮아져 태양전지 효율을 저하시키게 되므로 CIGS 박막의 적절한 화합물 조성비를 갖도록 최적조건을 확립하는 것이 매우 중요하다. 본 실험에서는 광흡수층 형성을 위해 Sputtering법으로 금속 전구체를 증착하고, 고온에서 셀렌화 열처리를 수행하는 Sequential process(2단계 증착법)를 이용하였다. soda-lime glass 기판에 Back contact으로 Mo를 증착하고, 1단계로 CuIn0.7Ga0.3 조성비의 타겟을 이용하여 Sputtering법으로 $0.5{\sim}2{\mu}m$ 두께의 CIG 전구체를 증착하였다. 2단계로 CIG 전구체의 셀렌화열처리를 통하여 CIGS 화합물 구조의 박막을 형성시켰다. 이때 형성된 CIGS 화합물 박막의 두께는 동일하게 함으로써, 열처리온도에 의한 박막의 구조변화를 비교하였다. 증착된 CIGS 박막은 고온 엑스선회절분석을 통해 증착 두께와 온도 변화에 따른 CIGS 층의 구조 변화를 확인하고, 동일한 증착조건으로 Buffer layer, Window layer, Grid 전극을 형성하여 태양전지셀 특성을 평가함으로써 CIGS 태양전지 광흡수층의 결정구조에 따른 광변환 효율을 비교하였다.

  • PDF

A Study on the Cu-based $I-III-VI_2$ Compound Thin Film Solar Cells (Cu계 $I-III-VI_2$ 화합물 박막 태양전지 연구)

  • Yun JaeHo;Ahn SeJin;Kim SeokKi;Lee JeongChul;Song Jinsoo;Ahn ByungTae;Yoon KyungHoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.109-112
    • /
    • 2005
  • Cu계$I-III-VI_2$화합물은 직접천이형 반도체로 광흡수계수가 매우 높아 박막형 태양전지 제조에 매우 유리하다 또한 화학적으로 안정하며 Ga, A1등을 첨가하면 에너지 금지대폭을 조절할 수 있어 Wide Bandgap 태양전지 및 탠덤구조 태양전지를 제조하기에도 용이하다. $CuInSe_2(CIS)$ 물질에서 In을 $20-30\%$ 정도 치환한 $Cu(In,\;Ga)Se_2(CIGS)$ 태양전지의 경우 $19.5\%$의 세계 최고 효율을 보고하고 있으며 이는 다결정 실리콘 태양전지의 효율과 비슷한 수준이다. 본 연구에서는 동시 진공증발법을 이용하여 증착한 CIGS 박막 및 $CuGaSe_2(CGS)$ 박막을 이용하여 태양전지를 제조하였다. 공정의 재현성 및 결정립계가 큰 광흡수층 제조를 위하여 실시간 기판 온도 모니터링 시스템을 도입하였으며 버퍼층으로는 용액성장한 CdS 박막을 사용하였다. SLG/MO/CIGS(CGS)/CdS/ZnO/Al구조의 태양전지를 제조하여 면적 $0.5cm^2$에서 각각 $15\%$(CIGS)와 $7\%(CGS)$의 효율을 얻었다.

  • PDF

Development of High Efficiency CIGS Thin Film Solar Cells (고효율 CIGS 박막 태양전지 개발)

  • Yun, Jae-Ho;Song, Jin-Sub;Kim, Ki-Hwan;Kim, Min-Sik;Ahn, Byung-Tae;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.149-151
    • /
    • 2006
  • Cu계 $I-III-VI_2$화합물은 직접천이형 반도체로 광흡수계수가 매우 높아 박막형 태양전지 제조에 매우 유리하다. 또한 화학적으로 안정하며 Ga, Al 등을 첨가하면 에너지 금지대폭을 조절할 수 있어 Wide Bandgap 태양전지 및 탠덤구조 태양전지를 제조하기에도 용이하다 $CulnSe_2(CIS)$ 물질에서 In을 20-30% 정도 치환한 $Cu(In,Ga)Se_2(CIGS)$ 태양전지의 경우 19.5%의 세계 최고 효율을 보고하고 있으며 이는 다결정 실리콘 태양전지의 효율과 비슷한 수준이다. 본 연구에서는 동시 진공증발법을 이용하여 증착한 CIGS 박막을 이용하여 태양전지를 제조하였다. 공정의 재현성 및 결정립계가 큰 광흡수층 제조를 위하여 실시간 기판온도 모니터링 시스템을 도입하였으며 버퍼충으로는 용액성장한 CdS 박막을 사용하였다. SLG/MO/CIGS(CGS)/CdS/ZnO/Al 구조의 태양전지를 제조하여 면적 $0.5cm^2$에서 각각 17.5%의 효율을 얻었다.

  • PDF

화학적 구조 설계를 통한 수계 Cu-In-S 잉크와 액상셀렌화 법의 개발을 통한 고효율의 CISSe 태양전지 제작

  • O, Yun-Jeong;Yang, U-Seok;Kim, Ji-Min;Mun, Ju-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.428-428
    • /
    • 2016
  • Copper indium sulfide (selenide) (CuIn(S,Se)2,CISSe)는 1.0~1.5 eV의 Direct band gap과 105 cm-1이 넘는 큰 광 흡수 계수를 가지고 있어 박막 태양전지의 흡수층으로써 연구되어 왔다. 최근 대량생산 및 저가 공정에 용이하다는 측면에서 용액 공정 기반 CISSe 태양전지 연구가 크게 주목 받고 있다. 용액공정 기반 중 하이드라진을 사용 한 경우 매우 높은 효율을 기록하였으나, 하이드라진 자체의 유독성과 폭발성 때문에 분위기 제어가 필요하고 여전히 저가화 및 대면적 제작에 한계가 있다. 따라서 알코올 솔젤 기반 CISSe 태양전지 제작 연구가 많이 진행되었으나, 결정립 성장 및 칼코겐 원자를 공급하기 위해 불가피하게 황화/셀렌화 후속 열처리 공정을 요구한다. 후속 열처리 공정은 폭발성의 황화수소/황화셀레늄 기체 분위기 제어와 고가의 장비를 필요로 한다. 본 연구에서는 매우 안정적이며 저가 용매인 물과 아민계 첨가제를 이용하여 Cu, In 전구체와 S, Se 이 포함된 Cu-In-S 잉크와 Se잉크를 제작하였다. 잉크 내에 S, Se을 첨가 함으로써 추가적인 후속공정 없이 비활성 가스 분위기에서 고품질의 CISSe 박막 제작을 가능케 하였다. 또한 Se 잉크 증착 횟수에 따른 결정 구조, 광학적 성질의 차이에 주목하였다. 따라서 수계 잉크를 대기 중에서 스핀코팅으로 박막을 제작한 후, Hot plate에서 건조하여 균일한 박막을 제조하고, 제작된 박막을 tube furnace에서 환원 분위기 및 비활성 가스 분위기에서 열처리 진행하여 $1.3{\mu}m$ 두께의 고품질의 CISSe 흡수층을 제작하였다. 이러한 흡수층에 대해 XRD, SEM, EDS 분석을 진행하여, 결정성, 미세구조, 및 조성을 확인하였으며, 제작된 흡수층 위에 버퍼층/투명전극층을 차례로 증착하여 CISSe 태양전지를 제작하여 셀 성능 및 양자 효율 특성을 파악하였다. 또한 액상 Raman 분석을 통해 결정립 성장 과정 메커니즘을 제시하였다.

  • PDF

RF 마그네트론 스퍼터링을 이용하여 온도별로 증착한 CIGS 박막의 미세구조 및 화학 조성 분석

  • Jeong, Jae-Heon;Jo, Sang-Hyeon;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.278-279
    • /
    • 2012
  • 최근 들어 세계적인 고유가 행진과 화석연료 고갈에 대응하기 위하여 대체 에너지원 발굴에 대한 필요성이 높아지고 있다. 그 중 CIGS 박막 태양전지는 미래 신재생 에너지 자원의 가장 유망한 후보군 중 하나이다. 기존의 Si 기반의 태양전지의 경우 시간경과에 따른 효율 저하, 높은 재료비, 복잡한 공정으로 인하여 대량생산이 힘든 단점을 가지고 있다. 반면 박막 태양전지의 경우 생산 원가를 낮출 수 있는 태양전지 제조기술로서는 2세대 태양전지로 불리우며, 에너지 변환 효율과 생산 원가에서 우월성을 가진다. 그리고 이러한 CIGS 박막 태양전지를 단일 CIGS 타겟을 이용하여 스퍼터링 공정으로 제작하면 기존에 사용되었던 동시 증발법에 비해서 간단하고 대면적 코팅 및 대량 생산이 가능하다. 본 연구에서 사용된 기판으로는 $25{\times}25mm$ 크기의 Soda Lime Glass (SLG) 위에 DC 마그네트론 스퍼터링 공정으로 Mo가 $1{\mu}m$ 증착된 시편을 이용하여, 2 inch 단일 CIGS 타겟 (MATERION, CIGS Target 25-17.5-7.5-50 at%)을 기판 가열하여 증착하였다. RF 파워는 80 W, 기판 온도는 RT, 100, 200, 300, $400^{\circ}C$로 가열 후 증착하였고, CIGS 박막의 두께는 약 $1{\mu}m$로 일정하게 하였다. CIGS/Mo 박막의 파워별 미세구조 분석을 위해 X-ray Diffraction (XRD, BRUKER GADDS)로 측정하였으며, 박막의 결정립 크기를 확인하기 위해 Field Emission Scanning Electron Microscopy (FE-SEM, HITACHI)을 사용하여 측정하였다. 조건별 박막의 조성 분석 및 표면조도는 Energy Dispersive X-ray Spectroscopy (EDS, HORIBA 7395-H)와 Atomic Force Microscopy (AFM)을 이용하여 각각 평가하였다. 마지막으로 광학적 특성을 평가하고 박막의 밴드갭 에너지를 계산하기 위해서 190 nm에서 1,100 nm의 영역 대에서 자외선 광학 측정기(UV-Vis, HP-8453, AGLIENT)로 투과도를 측정하여 밴드갭 에너지를 계산하였다. 증착된 CIGS 박막은 기판 온도가 증가함에 따라 결정립 크기가 커지는 경향을 보였다. 이는 기판 상에 도달한 스퍼터 원자의 확산 에너지 증가로 인한 것으로 생각되어진다. 또한, 기판온도에 따른 결정립 성장 변화는 4성분계의 박막의 조성 및 핵생성 밀도와 관련되어 설명되어질 것이다.

  • PDF