자동차는 코너 주행 시 In-corner와 Out-corner 의 바퀴 궤적이 달라지므로, 특별한 장치가 없이 좌우 구동 측의 바퀴가 같은 속도로 회전을 하게 되면 정상적인 주행이 불가능하다. 따라서 정상적인 코너 주행이 가능 하려면, 코너 안쪽 바퀴보다 바깥쪽 바퀴가 더 빨리 회전해야 하며 이러한 회전 차를 보상받지 못할 경우 바깥쪽 바퀴가 끌리는 현상이 발생하는데 이를 방지하기 위해 디퍼렌셜 기어가 필요하다. 현재 디퍼렌셜 기어는 디퍼렌셜 케이스와 링기어를 볼트로 체결하는 조립 공법을 통해 생산되고 있다. 하지만 볼트 체결 공법은 조립을 위한 볼트와 볼트 체결을 위한 플랜지와 볼팅을 위한 홀을 가공하는 공정이 필요하기 때문에 재료비 절감 및 생산 효율 향상에 매우 불리하고 볼트체결을 위한 부분 때문에 불필요한 무게가 증가하게 된다. 따라서 본 연구에서는 이러한 기계적 체결 방식을 레이저 용접 방식으로 대체하여 재료비를 절감하고 무게 저감을 통해 주행성능을 향상시키고자 하였다. 링기어의 소재는 침탄처리강(SCM420H)이며 디퍼렌셜 케이스의 소재는 주철(GCD500)을 사용하고 있다. 주철은 용접시 용접부와 열영향부에서 마르텐사이트 조직과 레데브라이트, 시멘타이트 조직이 생성되며 고탄소 모재의 탄소 확산으로 인한 부분 혼합영역에서 탄소 합금이 생성되어 균열이 발생하는 등 용접성이 매우 좋지 않은 것으로 알려져 있다. 이러한 주철의 난용접성을 해결하는 방법으로는 고탄소 모재 용접시 발생하는 탄소의 확산을 억제하거나 예열이나 후열 처리를 통한 냉각 속도의 제어하는 방법과 오스테나이트 안정화 원소를 첨가한 필러와이어를 사용하여 용접시 마르텐사이트와 시멘타이트의 성장을 방해하는 방법 등이 이용되고 있다. 본 연구에서는 예열처리나 후열처리를 통한 주철의 용접법은 대량 생산을 통한 원가절감을 노리는 자동차 업계의 특성에 비추어 볼 때 비용이나 프로세스 구성 면에서 적용하는 것이 어려울 것이라 판단하여 Ni-base filler metal을 통한 주철의 용접법을 선택하였고 그 결과 실차에 적용하기 위한 비틀림 강성 테스트나 내구 테스트는 통과하였으나 NVH 테스트 결과 볼팅 체결 방식에 비하여 소음이 커지는 문제가 발생하고 링기어의 HAZ부가 고경화 되는 문제가 발생하였다. 때문에 용입깊이를 초기 시제품인 5mm에서 4mm로 변경시켜 입열량 감소 및 용접변형을 줄여 소음 문제를 해결하고자 하였으며 링기어의 침탄층을 1mm 절삭하여 링기어 HAZ부의 고경화 문제를 해결하고자 하였다. 이러한 용접 구조 변경이 용접변형 및 강성과 피로에 미치는 영향력을 알아보고자 용접 및 열처리 상용 소프트웨어인 SYSWELD, 구조해석 상용소프트웨어인 NX_NASTRAN, 피로 해석 상용 소프트웨어인 FEMFAT을 이용하여 시뮬레이션 하였고 실제 구조 변경한 용접 시제품과 비교, 분석하였다.
본 논문에서는 딥러닝과 구체의 형태 변형 방법을 이용한 단일 이미지에서의 3D mesh 재구축 기법을 제안한다. 제안한 기법은 기존의 방식과 다른 다음과 같은 독창성이 있다. 첫 번째, 기존의 근처의 가까운 점들을 연결하여 모서리 또는 면을 구축하는 방식과 다르게 딥러닝 네트워크을 통하여 구체의 꼭짓점의 위치를 사물의 3D 포인트 클라우드와 매우 유사하게 수정한다. 3D 포인트 클라우드를 이용하므로 메모리가 적게 필요하며 구체의 꼭짓점에 오프셋 값 사이에 덧셈 연산만을 수행하기 때문에 더 빠른 연산이 가능하다. 두 번째, 수정한 꼭짓점에 구체의 면 정보를 씌워 3D mesh를 재구축한다. 구체의 꼭짓점의 위치를 수정하여 생성한 3D 포인트 클라우드의 점들의 간격이 일정하지 않을 때에도 이미 점들 사이의 연결 여부를 나타내는 구체의 면 정보라는 3D mesh의 면 정보를 가지고 있어 표현의 단순화나 결손을 방지할 수 있다. 제안하는 기법의 객관적인 신뢰성을 평가하기 위해 공개된 표준 데이터셋인 ShapeNet 데이터셋을 이용하여 비교 논문들과 같은 방법으로 실험한 결과, 본 논문에서 제안하는 기법의 IoU 값이 0.581로, chamfer distance 값은 0.212로 산출되었다. IoU 값은 수치가 높을수록, chamfer distance 값은 수치가 낮을수록 우수한 결과를 나타내므로 다른 논문에서 발표한 기법들보다 3D mesh 재구축의 결과에서 성능의 효율성이 입증되었다.
본 논문은 정찰용 하드웨어와 소프트웨어를 설계하고 제작하여 캔위성 플랫폼과 지상국에 탑재 후 기능을 검증한 내용을 다루고 있다. 주요 정찰 임무는 크게 2가지로 구성되는데, 레이더와 GPS, IMU 센서를 이용해 주변 지형을 3D로 렌더링하는 지형탐색과 광학 카메라 영상분석을 통한 실시간 주요 물체 검출이다. 그리고 캔위성 시스템의 완성도를 높이기 위해 GUI 소프트웨어를 통해 데이터 분석효율을 향상하였다. 구체적으로 지형정보와 물체 탐지정보를 실시간으로 지상국에서 확인할 수 있는 소프트웨어를 제작하였으며, 비정상패킷 예외처리와 시스템 초기화 기능을 통해 임무 실패를 방지하였다. 통신계는 LTE와 AWS 서버를 통한 통신을 메인 채널로 사용했고, 보조 채널로 지그비를 사용하였다. 완성된 캔위성을 로켓 발사 방식과 드론 탑재 방식으로 공중 낙하 실험하였다. 실험 결과, 지형탐색과 물체 검출 성능이 우수하였으며, 모든 결과를 실시간으로 처리 후 지상국 소프트웨어에 성공적으로 시현하였다.
감마카메라의 공간분해능을 향상시키기 위해서는 콜리메이터의 구멍 크기를 작게 만들어야 하므로 민감도는 저하된다. 민감도를 향상시키기 위해서는 구멍 크기를 크게 해야 하므로 공간분해능은 저하된다. 즉, 공간분해능과 민감도는 서로 상반된 특성을 보인다. 본 연구에서는 공간분해능과 민감도를 모두 향상시키는 감마카메라를 설계하였다. 동일한 공간분해능을 보이는 감마카메라에서 보다 높은 민감도를 획득하기 위해 섬광체의 구조를 기존시스템과 다르게 설계하였다. 섬광 픽셀을 사용하고, 섬광 픽셀 사이에는 격벽을 위치시켜 입사한 감마선이 다른 섬광 픽셀로 투과되어 상호작용하는 것을 방지하였다. 설계한 감마카메라의 성능을 평가하기 위해 Geant4 Application for Tomographic Emission (GATE) 시뮬레이션을 수행하였다. 동일한 공간분해능을 획득하는 조건의 콜리메이터를 각각 사용하여 기존 감마카메라와 설계한 감마카메라의 민감도를 획득한 결과 각각 0.0026%, 0.0042%로 설계한 감마카메라의 민감도가 61.54% 향상된 결과를 나타내었다. 본 연구에서 설계한 감마카메라를 사용하면 우수한 공간분해능을 확보하면서 민감도를 기존 시스템보다 향상시킬 수 있을 것으로 판단된다.
선박평형수란, 선박의 균형을 유지하기 위해서 배에 채우는 바닷물을 말한다. 선박평형수를 통한 외래종 유입은 생태계 교란의 주된 원인이다. 이를 방지하기 위해 IMO(International Maritime Organization)에서는 2004년 선박평형수와 침전물 관리협약을 채택하였다. 협약이 발효될 경우 각국 항만 당국에서는 선박평형수가 협약의 성능 기준에 맞게 배출되는지 확인이 필요하다. 본 논문에서는 이미지처리를 통한 선박평형수 내 유해수중생물 개체수 측정 방법을 제안한다. 부산 신항에서 채취한 선박평형수로부터 3개의 샘플을 추출하였으며, 각 샘플당 서로 다른3개의 grey-scale 이미지를 만들어 실험자료로 사용하였다. 이미지처리를 이용한 자동 세포계수 프로그램인 CellProfiler를 이용하여 본 논문에서 제안하는 방법과 비교하였다. CellProfiler에서 사용한 설정은 사람이 직접 세포계수를 한 결과에 맞춰 경험적으로 결정하였다. 각 이미지에서 CellProfiler와 가장 유사한 결과를 보이는 최적의 임계값을 찾은 뒤 그 평균을 최종 임계값으로 사용하였다. 실험결과에서 제안한 방법은 CellProfiler와 비슷한 세포 계수 결과를 보이면서도 약 10배 정도 빠른 처리 속도를 보였다.
국토 면적의 약 90%를 차지하는 농촌은 여러가지 공익적 기능을 수행하는 공간으로서 중요성과 가치가 증가하고 있지만 주거지 인근에 축사, 공장, 태양광패널 등 주민생활에 불편을 미치는 시설들이 무분별하게 들어서면서 농촌 환경과 경관이 훼손되고 주민 삶의 질이 낮아지고 있다. 농촌지역의 무질서한 개발을 방지하고 농촌 공간을 계획적으로 관리하기 위해서는 농촌지역 내 위해시설에 대한 탐지 및 모니터링이 필요하다. 주기적으로 취득 가능하고 전체 지역에 대한 정보를 얻을 수 있는 위성영상을 통해 데이터의 취득이 가능하고, 합성곱 신경망 기법을 통한 영상 기반 딥러닝 기술을 활용하여 효과적인 탐지가 가능하다. 따라서 본 연구에서는 의미적 분할(Semantic segmentation)에서 높은 성능을 보이는 U-Net 모델을 이용하여 농촌 지역에서 잠재적으로 위해시설이 될 수 있는 농촌시설을 분류하는 연구를 수행하였다. 본 연구에서는 2020년에 제작된 공간해상도 0.7 m의 KOMPSAT 정사모자이크 광학영상을 한국항공우주연구원으로부터 제공받아 사용하였으며 축사, 공장, 태양광 패널에 대한 AI 학습용 데이터를 직접 제작하여 학습 및 추론을 진행하였다. U-Net을 통해 학습시킨 결과 픽셀 정확도(pixel accuracy)는 0.9739, mean Intersection over Union (mIOU)은 0.7025의 값을 도출하였다. 본 연구 결과는 농촌 지역의 위험 시설물 모니터링에 활용될 수 있으며, 농촌계획 수립에 있어 기초 자료로 활용될 수 있을 것으로 기대된다.
고령화의 심화, 사회참여 욕구의 확대, 삶의 질 향상과 관련하여 장애인과 고령자를 위한 재활 로봇에 대한 관심이 커지고 있다. 최근 고령 및 장애 인구의 증가와 함께 간병인 또는 보호자의 감소 추세에 따라 더 관심이 증대되고 있다. 이에 이러한 변화에 맞는 경제적이면서도 효율적인 재활훈련이 가능한 능동형 보행훈련 로봇의 개발이 요구된다. 이에 본 연구에서는 두 다리의 관절을 움직이는 근육 6 부위에서 근전도를 획득하고, 이를 분석하여 개인의 근육 상태를 고려하여 보행 재활이 가능한 운동 로봇 시스템을 제안하였다. 이를 통하여 단순히 자동으로 보행 운동이 제공될 때 환자의 의지가 반영되지 않아 운동의 효과가 낮아지는 것을 방지할 수 있도록 시스템을 구성하였다. 개발된 시스템의 평가 결과 본 연구를 통해 제작된 보행 재활 로봇 시스템이 설계 요구사항에 적합한 성능을 갖추었음을 확인할 수 있었으며, 사용성 평가에서도 종합적으로 만족스러운 것으로 확인되었다. 본 연구의 결과는 보행 재활에 어려움을 겪고 있는 환자들에게 큰 도움이 될 것으로 생각되며, 근전도 신호 기반 보행 로봇 시스템 개발에 도움이 될 것으로 판단된다.
도시지역의 교통난 해소와 녹지공간의 확보를 위해 도심지 터널이 증가하면서 차량의 정체 가능성이 높은 터널에 대한 제·배연방식으로 대배기구에 의한 집중배기방식의 적용이 증가하는 추세에 있다. 집중배기방식의 배연성능은 배연풍량 뿐만 아니라 배기구(댐퍼)의 형상이나 배기풍속 등 다양한 인자에 의해서 영향을 받는 것으로 알려져 있다. 이에 본 연구에서는 각국의 배연시스템 설계기준 및 설치현황을 알아보고 배연풍량이 동일한 경우에 배연댐퍼 사이즈에 따른 배연성능을 연기 이동거리 측면에서 수치시뮬레이션을 수행하여 비교·평가하였으며, 다음과 같은 결과를 얻었다. 배연댐퍼의 단면적이 증가할수록 배기팬에 근접한 댐퍼에서 배기풍량이 집중되어 화재 하류의 댐퍼의 배연풍량이 감소하여 하류측의 연기 이동거리가 증가하는 현상이 발생한다. 이와 같은 현상을 방지하기 위해서는 배연댐퍼의 단면적을 작게하여 통과풍속을 높게 함으로써 댐퍼통과 시 압력손실이 증가하도록 하여 배기구간에서 배연풍량의 불균일성을 완화할 필요가 있다. 본 해석범위에서는 배연댐퍼의 설치간격이 50 m인 경우에는 설계통과풍속이 4.4 m/s (댐퍼면적: 2.34 ㎡ = 1.25 × 1.85 m) 이상, 댐퍼의 설치간격이 100 m인 경우에는 설계통과풍속이 4.84 m/s (댐퍼면적: 3.38 ㎡ = 1.5 × 2.25 m) 이상일 때 배연성능확보에 유리한 것으로 나타났다.
최근 영상 데이터의 급증으로 이를 효과적으로 처리하기 위해 객체 탐지 및 추적, 행동 인식, 표정 인식, 재식별(Re-ID)과 같은 다양한 컴퓨터비전 기술에 대한 수요도 급증했다. 그러나 객체 탐지 및 추적 기술은 객체의 영상 촬영 장소 이탈과 재등장, 오클루전(Occlusion) 등과 같이 성능을 저하시키는 많은 어려움을 안고 있다. 이에 따라 객체 탐지 및 추적 모델을 근간으로 하는 행동 및 표정 인식 모델 또한 객체별 데이터 추출에 난항을 겪는다. 또한 다양한 모델을 활용한 딥러닝 아키텍처는 병목과 최적화 부족으로 성능 저하를 겪는다. 본 연구에서는 YOLOv5기반 DeepSORT 객체추적 모델, SlowFast 기반 행동 인식 모델, Torchreid 기반 재식별 모델, 그리고 AWS Rekognition의 표정 인식 모델을 활용한 영상 분석 시스템에 단일 연결 계층적 군집화(Single-linkage Hierarchical Clustering)를 활용한 재식별(Re-ID) 기법과 GPU의 메모리 스루풋(Throughput)을 극대화하는 처리 기법을 적용한 행동 및 표정 검출용 영상 분석 시스템을 제안한다. 본 연구에서 제안한 시스템은 간단한 메트릭을 사용하는 재식별 모델의 성능보다 높은 정확도와 실시간에 가까운 처리 성능을 가지며, 객체의 영상 촬영 장소 이탈과 재등장, 오클루전 등에 의한 추적 실패를 방지하고 영상 내 객체별 행동 및 표정 인식 결과를 동일 객체에 지속적으로 연동하여 영상을 효율적으로 분석할 수 있다.
최근 의료, 제조, 자율주행, 보안 등 다양한 분야에서 인공지능과 컨볼루션 신경망 등 딥러닝 기술을 활용한 연구들이 활발하게 진행되고 있으며, 사회 전반에 적지 않은 영향을 미치고 있다. 본 연구 또한 이러한 흐름에 맞춰서 고고학 유물 분류에 딥러닝을 활용해 보았다. 즉, 연구는 고고학 조사를 통해 출토된 고대 수막새의 이미지 분류에 딥러닝 기술을 적용하는 초보적 시도로서, 고구려, 백제, 신라 시대의 수막새 이미지를 CNN 모델로 학습시켜 분류를 진행하였다. 고구려, 백제, 신라 수막새 이미지 각각 100장씩 총 300장을 기반으로 기본 데이터셋을 형성하였고, 데이터 증강 기법을 활용하여 4배를 증가시킴으로써 총 1,200장을 데이터셋으로 구축하였다. 사전 훈련된 EfficientNetB0 모델의 전이학습을 통하여 모델을 구축한 후, 5겹 교차검증을 실시한 결과 평균 학습 정확도 98.06%, 검증 정확도 97.08%를 기록하였다. 또한 학습된 모델을 240장의 테스트 데이터셋으로 성능을 평가한 결과, 최소 91% 이상의 높은 정확도로 삼국의 수막새 이미지를 시대별로 구분할 수 있음을 확인하였다. 특히 학습률 0.0001에서 정확도 92.92%, 정밀도 92.96%, 재현율 92.92%, F1 점수 92.93%로 가장 우수한 성능을 보였는데, 이는 다양한 학습률 설정을 통하여 과적합과 과소적합 문제를 방지함과 동시에 최적의 매개변수를 찾는 과정에서 이루어졌다. 본 연구의 결과는 한국 고고학 자료의 분류에 딥러닝 기술 활용 가능성을 확인했다는 점에서 의의가 있다고 생각된다. 또한 기존에 축적·제작된 ImageNet 데이터셋 및 파라미터가 고고 자료 분석에도 긍정적으로 적용할 수 있음을 확인하였다. 이러한 접근은 향후 고고학 데이터베이스 축적이나 활용, 박물관의 유물 분류 및 정리 등 다양한 방식의 모델을 창출할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.