• Title/Summary/Keyword: 결과예측

Search Result 20,663, Processing Time 0.043 seconds

Development of a model for predicting dyeing color results of polyester fibers based on deep learning (딥러닝 기반 폴리에스터 섬유의 염색색상 결과예측 모형 개발)

  • Lee, Woo Chang;Son, Hyunsik;Lee, Choong Kwon
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.74-89
    • /
    • 2022
  • Due to the unique recipes and processes of each company, not only differences among the results of dyeing textile materials exist but they are also difficult to predict. This study attempted to develop a color prediction model based on deep learning to optimize color realization in the dyeing process. For this purpose, deep learning-based models such as multilayer perceptron, CNN and LSTM models were selected. Three forecasting models were trained by collecting a total of 376 data sets. The three predictive models were compared and analyzed using the cross-validation method. The mean of the CMC (2:1) color difference for the prediction results of the LSTM model was found to be the best.

Nonlinear Forecasting of Daily Runoff Using Inverse Approach Method (가역접근법을 이용한 일유출량 자료의 비선형 예측)

  • Jeong, Dong Kug;Lee, Bae Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1178-1182
    • /
    • 2004
  • 시계열 자료의 분석과 예측은 수문학분야에서 매우 중요하면, 최근 들어 특정한 수문시계열에서 카오스 특성이 발견되고 있다. 카오스 특성을 갖는 수문시계열의 예측에 있어, 기존의 거의 모든 연구는 시스템의 특성을 파악한 뒤 예측을 실시하는 표준접근법이 채택되어왔다. 그러나 Phoon 등은 시스템의 특성분석에 앞서 예측을 실시하고, 상태공 매개변수가 시스템의 특성분석단계가 아닌 예측단계에서 평가되는 가역접근법을 제안하였다. 본 연구에서는 Phoon 등이 제안한 가역접근법과 기존에 널리 적용되어온 표준접근법을 실제 일유출량 자료에 적용함으로써, 가역접근법의 적용성을 검토하고 카오스 시계열의 특성을 파악하였다. 본 연구에서 사용한 비선형 예측 기법으로는 카오스이론이 적용된 부분근사화 기법을 이용하였다. 카오스 특성분석을 통해, Bear 강 일유출량 시계열 자료에서 카오스 특성이 나타남을 알 수 있었다. 표준접근법과 가역접근법을 이용하여 Bear 강의 일유출량 자료에 대하여 예측을 실시한 결과, 카오스 특성을 갖는 일유출량 시계열 자료의 단기 예측의 우수성을 알 수 있었으면, 가역접근법이 표준접근법에 비해 좋은 결과를 나타내었다. 특히, 가역접근법은 예측단계에서 예측시간(T)에 대하여 예측매개변수를 최적화시킴으로써 보다 정밀한 예측을 할 수 있었으며, 시스템에 대한 정보손실이 발생하였을 경우 예측에 대한 상태공간 매개변수를 다시 추정해야 하는 표준접근법에 비해 실제적 적용성이 매우 우수하였다.

  • PDF

The Comparison among Various Propagation prediction Models for Broadcasting Wave (방송 전파 예측을 위한 다양한 전파전파 모델들의 비교 연구)

  • 이영대;조한진;양경석;박천석;남상욱;목하균
    • Journal of Broadcast Engineering
    • /
    • v.3 no.1
    • /
    • pp.61-68
    • /
    • 1998
  • This paper compares various propagation models developed by several researchers with the measurements in Korea. The models we have considered are Okumura model, Longley-Rice model, ITU-R model and Lee model. The measured signal is vertically IXllarized E -field transmitted from Mt. Namsan at 320MHz. According to the result, Okumura model shows the best performance for the overall test IXlints, and ITU-R model has a good performance as Okumura model for receiving points above lOkm from the transmitter.

  • PDF

A compressor Performance Prediction Method for Analyzing the Off-Design Effect of the Gas Turbine Cycle in IGCC Power Plant (IGCC 발전소용 가스터빈 사이클 탈설계점효과 분석을 위한 압축기 성능예측 방법)

  • Kim, Sung-Gon;Lee, Chan
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1997.10a
    • /
    • pp.99-104
    • /
    • 1997
  • 기존의 천연가스 가스터빈 시스템을 IGCC 발전소에 적용함에 있어 야기되는 탈설계점효과를 고려할 수 있는 압축기 성능곡선의 예측방법을 제안하였다. 압축기 성능해석방법으로는 익렬요소방법에 전압력손실, 유동편차각 모델들을 결합하여 사용하였으며, 본 방법에 의한 예측결과와 실제 압축기 성능실험결과를 비교하였다. 예측결과가 다양한 압축기 운전조건에 대해 시험결과와 비교적 잘 일치하였으며, 이를 통해 본 예측방법이 IGCC 공정설계 및 성능평가시 가스터빈 탈설계점 효과를 분석할 수 있는 기본 모듈로 사용될 수 있을 것이다.

  • PDF

Evaluation of the Prediction of B-RISK-FDS-Coupled Simulations for Multi-Combustible Fire Behavior in a Compartment (구획실 내 가연물들의 화재거동에 대한 B-RISK와 FDS 연계 화재 시뮬레이션 예측성능 평가)

  • Baek, Bitna;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.50-58
    • /
    • 2019
  • The prediction performance of B-RISK was evaluated for the fire behaviors of combustibles in a compartment using Fire Dynamics Simulator (FDS). First of all, to predict the heat release rate (HRR) for two combustible sets, the HRR for one combustible set and the design fire curve were used as input values for B-RISK. Comparing results of B-RISK calculations with experimental data for two combustible sets, it was found that B-RISK results predicted insufficiently for fire growth rate of experimental data but there was good agreement for maximum HRR and total HRR with the experimental data. And the B-RISK results were used for input values of FDS to evaluate the fire behaviors of B-RISK results. Comparing results of FDS calculations with experimental data, the simulation results showed that the temperature and concentrations of O2, CO2 in the fire growth phase were different from the experimental data. However, when using the B-RISK result for percentile 70%, the simulation results sufficiently predicted the overall fire behaviors.

BKS Fusion of Classifier Ensemble for Prediction of Diabetes (당뇨병의 예측을 위한 분류기 앙상블의 BKS 결합)

  • 박한샘;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.265-267
    • /
    • 2004
  • 경제 여건의 향상 및 생활양식의 변화로 최근 우리나라에서도 당뇨병 환자가 늘어남에 따라 당뇨병의 예측 및 치료가 중요한 관심사가 되고 있다. 본 논문은 1993년과 1995년 두 차례에 걸쳐 경기도 연천 지역 주민들의 여러 가지 신체 지수 등을 조사한 데이터를 대상으로, 1차 년도의 데이터로부터 동일한 환자가 2차 년도에 정상상태를 유지하는지 흑은 당뇨병으로 진행이 되는지를 예측하는 문제를 다룬다. 혈당량, 허리둘레 등의 수치가 당뇨병의 발병에 영향을 끼치는 것은 알려진 사실이므로, 현재의 데이터로부터 앞으로의 발병 가능성을 예측하는 것이 가능하며, 이는 환자에게 보다 정확한 정보를 알려줄 수 있으므로 의미가 있는 일이다. 예측을 위해 본 논문에서는 분류기를 사용하며, 예측율을 높이기 위해 여러 분류기를 BKS로 결합하였다. BKS (behavior knowledge space) 결합 방법은 분류기간의 독립 가정이 필요 없으며, 데이터 크기가 크고 전형적인 경우에 좋은 결과를 낼 수 있는 방법이다. BKS 결합 방법을 통해 실험을 해본 결과 단일 분류기로 실험을 한 결과보다 향상된 성능을 얻을 수 있었으며, 투표 결합 방법과 비교하여 더 좋은 성능을 보였다.

  • PDF

Development of a Rainfall Forecast Model Using Wide Range Multi-Sensor Data (광역 다중센서 자료를 사용한 강우예측기법 개선에 관한 연구)

  • Kim, Gwang-Seob;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.123-126
    • /
    • 2005
  • 본 연구에서는 상층기상자료, 자동 기상 관측망 자료 및 신경망기법을 사용하여 단시간 강우 예측 모형을 개발하였다. 호우를 동반한 이송 기상 시스템의 이동 경로가 라디오존데로부터 획득할 수 있는 상층기상 자료 즉 상층 풍향자료와 동일한 방향으로 이동한다는 가정 하에 원거리에서 발생하는 기상현상의 발달과정을 판단 할 수 있는 알고리즘을 개발하고, 이러한 원거리 입력 자료와 예측하고자 하는 값 사이의 비선형 상관 관계를 연결하는 기법으로 인공 신경망 기법을 도입하였다. 개발된 모형을 2002년 태풍 루사로 인하여 큰 피해를 입은 감천지역에 적용하였다. 포항과 오산의 라디오존데에서 획득한 700mb에서의 풍향자료와 5년의 자료기간을 가지는 350개의 자동 기상 관측망 자료를 입력 자료로 사용하였으며 결과는 상층기상자료를 사용하지 않고 예측한 결과에 대하여 개선된 강우 예측결과를 보여주었다.

  • PDF

A Study on the Phase Formation and Sequence in Co/Si System during Ion Beam Mixing (Ion Beam Mixing에 의한 Co/Si 계의 상 형성 및 전이에 관한 연구)

  • 최정동;곽준섭;백홍구;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.1
    • /
    • pp.26-31
    • /
    • 1995
  • 본 연구에서는 Co/Si 계에 대한 이온선 혼합실험을 온도와 이온선량을 변수로 하여 실시하였고, Co/Si 계에 대한 상형성 과정을 금속/Si 계에 대한 이온선 혼합시의 비정질상 및 결정상 형성예측 모델(ADF Model)과 초기 결정상 예측 모델(PDF Model)을 이용하여 해석하였다. 이온선 혼합은 80KeV 가속기를 이용하여 상온$-400^{\circ}C$의 온도 범위에서 1.0X1015Ar+/$\extrm{cm}^2$-2.0X1016Ar+/$\textrm{cm}^2$의 이온선량을 변화시키면서 실험하였으며 상분석은 투과전자현미경(TEM)과 X선 회절 분석을 이용하였다. Co/Si 계에서 이온선 혼합시 형성되는 초기 결정상은 Co2Si이며 이온선량의 증가에 따라 CoSi로 상전이하였다. 이러한 실험 결과는 비정질상 및 결정상 형성 예측 모델(ADF model)과 초기 결정상 예측모델(PDF model)의 예측결과와 매우 잘 일치하고 있다. 이상의 연구 결과로부터 ADF 모델과 PDF모델을 이용하여 박막에서 형성되는 상을 보다 정확히 예측할 수 있음을 알 수 있었다.

  • PDF

A development of water intake quantity prediction model using deep learning technique with time series decomposition (TD-Deep learning을 이용한 하천수 취수량 예측 모형 개발)

  • Nguyen, Dinh Huy;Park, Moon hyung;Jung, Min-Kyu;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.365-365
    • /
    • 2020
  • 최근 기후변화로 인한 강우, 온도, 유량과 같은 수문학적 요소의 불확실성 증가와 더불어 산업화, 도시화로 인한 물 수요가 커짐에 따라 물부족 발생 위험이 증가하고 있다. 이에 따라, 안정적인 물 공급을 위한 하천유량과 취수량의 균형을 목적으로 하는 취수량의 예측 및 모의에 대한 중요성이 강조되고 있다. 본 연구에서는 과거 하천 취수량 자료로부터 미래 취수량을 예측하기 위해 딥러링 기법 중 하나인 순환신경망(LSTM) 모형과 시계열분해법을 결합하여 취수량 예측 모형을 개발하였다. 시계열분해법을 통해 자료의 경향성과 계절적 변동성 등 다양한 스케일의 시계열을 분해하여 전처리를 수행하였으며 불확실성을 의미하는 잔차(residual)에 LSTM을 적용하여 예측하였다. 결과적으로 LSTM 취수량 예측 모형은 높은 정확도를 보였으며, 월단위 전망 시 관측값에 대하여 신뢰성이 있는 결과를 나타내었다. 본 연구에서 개발한 모형에 따른 결과는 수자원 관리를 위해 활용이 가능할 것으로 기대된다.

  • PDF

DFT 방법을 이용한 벤젠 삼합체 π-π interaction의 양자역학 계산

  • Jeong, Hyeon-Su;Park, Gi-Cheol;Cho, Art.
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.399-408
    • /
    • 2014
  • 신약을 개발하거나 단백질 구조를 예측하는데 Molecular Mechanics (MM)의 방법을 사용한다. 하지만, MM 만으로는 자연현상에서 일어나는 결과를 정확하게 기술하기 어렵다. 본 연구는 기존의 MM 방법으로는 정확히 예측이 불가능한 비 공유결합 중 하나인 ${\pi}-{\pi}$ interaction을 양자역학 계산을 통해 정확한 예측이 가능한지 알아보았다. ${\pi}-{\pi}$ interaction이란 생채 내, 의약 화합물에서 발견되는 결합이기 때문에, 단백질과 결합하는 구조의 예측에 중요하다고 할 수 있다. 본 실험은 ${\pi}-{\pi}$ interaction을 갖는 Sandwich, T shape, 그리고 Parallel displaced 세 가지 모형과 각각의 모형 아래에 분자를 하나 더 쌓은 모형을 추가하여 양자역학 재산을 수행하였다. 양자역학 계산은 DFT의 세가지 함수 M06_2X, M05_2X, B3LYP를 이용하였다. 실험결과에서 세 가지 함수가 각기 다른 결과를 보였는데, 상대적으로 B3LYP의 경우에는 세가지 모델에서 모두 제대로 된 에너지 변화를 계산하지 못하였으며, M06_2X와 M05_2X의 결과에서는 거리에 따른 ${\pi}-{\pi}$ interaction 에너지의 변화를 정확하게 계산하였다. 이러한 결과를 바탕으로, 양자역학의 방법을 통해 MM에서는 예측이 불가능한 ${\pi}-{\pi}$ interaction을 계산 할 수 있고 이 부분을 고려하여 화합물 간의 결합구조를 예측을 향상시킬 수 있다.

  • PDF