Due to the unique recipes and processes of each company, not only differences among the results of dyeing textile materials exist but they are also difficult to predict. This study attempted to develop a color prediction model based on deep learning to optimize color realization in the dyeing process. For this purpose, deep learning-based models such as multilayer perceptron, CNN and LSTM models were selected. Three forecasting models were trained by collecting a total of 376 data sets. The three predictive models were compared and analyzed using the cross-validation method. The mean of the CMC (2:1) color difference for the prediction results of the LSTM model was found to be the best.
Proceedings of the Korea Water Resources Association Conference
/
2004.05b
/
pp.1178-1182
/
2004
시계열 자료의 분석과 예측은 수문학분야에서 매우 중요하면, 최근 들어 특정한 수문시계열에서 카오스 특성이 발견되고 있다. 카오스 특성을 갖는 수문시계열의 예측에 있어, 기존의 거의 모든 연구는 시스템의 특성을 파악한 뒤 예측을 실시하는 표준접근법이 채택되어왔다. 그러나 Phoon 등은 시스템의 특성분석에 앞서 예측을 실시하고, 상태공 매개변수가 시스템의 특성분석단계가 아닌 예측단계에서 평가되는 가역접근법을 제안하였다. 본 연구에서는 Phoon 등이 제안한 가역접근법과 기존에 널리 적용되어온 표준접근법을 실제 일유출량 자료에 적용함으로써, 가역접근법의 적용성을 검토하고 카오스 시계열의 특성을 파악하였다. 본 연구에서 사용한 비선형 예측 기법으로는 카오스이론이 적용된 부분근사화 기법을 이용하였다. 카오스 특성분석을 통해, Bear 강 일유출량 시계열 자료에서 카오스 특성이 나타남을 알 수 있었다. 표준접근법과 가역접근법을 이용하여 Bear 강의 일유출량 자료에 대하여 예측을 실시한 결과, 카오스 특성을 갖는 일유출량 시계열 자료의 단기 예측의 우수성을 알 수 있었으면, 가역접근법이 표준접근법에 비해 좋은 결과를 나타내었다. 특히, 가역접근법은 예측단계에서 예측시간(T)에 대하여 예측매개변수를 최적화시킴으로써 보다 정밀한 예측을 할 수 있었으며, 시스템에 대한 정보손실이 발생하였을 경우 예측에 대한 상태공간 매개변수를 다시 추정해야 하는 표준접근법에 비해 실제적 적용성이 매우 우수하였다.
This paper compares various propagation models developed by several researchers with the measurements in Korea. The models we have considered are Okumura model, Longley-Rice model, ITU-R model and Lee model. The measured signal is vertically IXllarized E -field transmitted from Mt. Namsan at 320MHz. According to the result, Okumura model shows the best performance for the overall test IXlints, and ITU-R model has a good performance as Okumura model for receiving points above lOkm from the transmitter.
Proceedings of the Korea Society for Energy Engineering kosee Conference
/
1997.10a
/
pp.99-104
/
1997
기존의 천연가스 가스터빈 시스템을 IGCC 발전소에 적용함에 있어 야기되는 탈설계점효과를 고려할 수 있는 압축기 성능곡선의 예측방법을 제안하였다. 압축기 성능해석방법으로는 익렬요소방법에 전압력손실, 유동편차각 모델들을 결합하여 사용하였으며, 본 방법에 의한 예측결과와 실제 압축기 성능실험결과를 비교하였다. 예측결과가 다양한 압축기 운전조건에 대해 시험결과와 비교적 잘 일치하였으며, 이를 통해 본 예측방법이 IGCC 공정설계 및 성능평가시 가스터빈 탈설계점 효과를 분석할 수 있는 기본 모듈로 사용될 수 있을 것이다.
The prediction performance of B-RISK was evaluated for the fire behaviors of combustibles in a compartment using Fire Dynamics Simulator (FDS). First of all, to predict the heat release rate (HRR) for two combustible sets, the HRR for one combustible set and the design fire curve were used as input values for B-RISK. Comparing results of B-RISK calculations with experimental data for two combustible sets, it was found that B-RISK results predicted insufficiently for fire growth rate of experimental data but there was good agreement for maximum HRR and total HRR with the experimental data. And the B-RISK results were used for input values of FDS to evaluate the fire behaviors of B-RISK results. Comparing results of FDS calculations with experimental data, the simulation results showed that the temperature and concentrations of O2, CO2 in the fire growth phase were different from the experimental data. However, when using the B-RISK result for percentile 70%, the simulation results sufficiently predicted the overall fire behaviors.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.265-267
/
2004
경제 여건의 향상 및 생활양식의 변화로 최근 우리나라에서도 당뇨병 환자가 늘어남에 따라 당뇨병의 예측 및 치료가 중요한 관심사가 되고 있다. 본 논문은 1993년과 1995년 두 차례에 걸쳐 경기도 연천 지역 주민들의 여러 가지 신체 지수 등을 조사한 데이터를 대상으로, 1차 년도의 데이터로부터 동일한 환자가 2차 년도에 정상상태를 유지하는지 흑은 당뇨병으로 진행이 되는지를 예측하는 문제를 다룬다. 혈당량, 허리둘레 등의 수치가 당뇨병의 발병에 영향을 끼치는 것은 알려진 사실이므로, 현재의 데이터로부터 앞으로의 발병 가능성을 예측하는 것이 가능하며, 이는 환자에게 보다 정확한 정보를 알려줄 수 있으므로 의미가 있는 일이다. 예측을 위해 본 논문에서는 분류기를 사용하며, 예측율을 높이기 위해 여러 분류기를 BKS로 결합하였다. BKS (behavior knowledge space) 결합 방법은 분류기간의 독립 가정이 필요 없으며, 데이터 크기가 크고 전형적인 경우에 좋은 결과를 낼 수 있는 방법이다. BKS 결합 방법을 통해 실험을 해본 결과 단일 분류기로 실험을 한 결과보다 향상된 성능을 얻을 수 있었으며, 투표 결합 방법과 비교하여 더 좋은 성능을 보였다.
Proceedings of the Korea Water Resources Association Conference
/
2005.05b
/
pp.123-126
/
2005
본 연구에서는 상층기상자료, 자동 기상 관측망 자료 및 신경망기법을 사용하여 단시간 강우 예측 모형을 개발하였다. 호우를 동반한 이송 기상 시스템의 이동 경로가 라디오존데로부터 획득할 수 있는 상층기상 자료 즉 상층 풍향자료와 동일한 방향으로 이동한다는 가정 하에 원거리에서 발생하는 기상현상의 발달과정을 판단 할 수 있는 알고리즘을 개발하고, 이러한 원거리 입력 자료와 예측하고자 하는 값 사이의 비선형 상관 관계를 연결하는 기법으로 인공 신경망 기법을 도입하였다. 개발된 모형을 2002년 태풍 루사로 인하여 큰 피해를 입은 감천지역에 적용하였다. 포항과 오산의 라디오존데에서 획득한 700mb에서의 풍향자료와 5년의 자료기간을 가지는 350개의 자동 기상 관측망 자료를 입력 자료로 사용하였으며 결과는 상층기상자료를 사용하지 않고 예측한 결과에 대하여 개선된 강우 예측결과를 보여주었다.
본 연구에서는 Co/Si 계에 대한 이온선 혼합실험을 온도와 이온선량을 변수로 하여 실시하였고, Co/Si 계에 대한 상형성 과정을 금속/Si 계에 대한 이온선 혼합시의 비정질상 및 결정상 형성예측 모델(ADF Model)과 초기 결정상 예측 모델(PDF Model)을 이용하여 해석하였다. 이온선 혼합은 80KeV 가속기를 이용하여 상온$-400^{\circ}C$의 온도 범위에서 1.0X1015Ar+/$\extrm{cm}^2$-2.0X1016Ar+/$\textrm{cm}^2$의 이온선량을 변화시키면서 실험하였으며 상분석은 투과전자현미경(TEM)과 X선 회절 분석을 이용하였다. Co/Si 계에서 이온선 혼합시 형성되는 초기 결정상은 Co2Si이며 이온선량의 증가에 따라 CoSi로 상전이하였다. 이러한 실험 결과는 비정질상 및 결정상 형성 예측 모델(ADF model)과 초기 결정상 예측모델(PDF model)의 예측결과와 매우 잘 일치하고 있다. 이상의 연구 결과로부터 ADF 모델과 PDF모델을 이용하여 박막에서 형성되는 상을 보다 정확히 예측할 수 있음을 알 수 있었다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.365-365
/
2020
최근 기후변화로 인한 강우, 온도, 유량과 같은 수문학적 요소의 불확실성 증가와 더불어 산업화, 도시화로 인한 물 수요가 커짐에 따라 물부족 발생 위험이 증가하고 있다. 이에 따라, 안정적인 물 공급을 위한 하천유량과 취수량의 균형을 목적으로 하는 취수량의 예측 및 모의에 대한 중요성이 강조되고 있다. 본 연구에서는 과거 하천 취수량 자료로부터 미래 취수량을 예측하기 위해 딥러링 기법 중 하나인 순환신경망(LSTM) 모형과 시계열분해법을 결합하여 취수량 예측 모형을 개발하였다. 시계열분해법을 통해 자료의 경향성과 계절적 변동성 등 다양한 스케일의 시계열을 분해하여 전처리를 수행하였으며 불확실성을 의미하는 잔차(residual)에 LSTM을 적용하여 예측하였다. 결과적으로 LSTM 취수량 예측 모형은 높은 정확도를 보였으며, 월단위 전망 시 관측값에 대하여 신뢰성이 있는 결과를 나타내었다. 본 연구에서 개발한 모형에 따른 결과는 수자원 관리를 위해 활용이 가능할 것으로 기대된다.
신약을 개발하거나 단백질 구조를 예측하는데 Molecular Mechanics (MM)의 방법을 사용한다. 하지만, MM 만으로는 자연현상에서 일어나는 결과를 정확하게 기술하기 어렵다. 본 연구는 기존의 MM 방법으로는 정확히 예측이 불가능한 비 공유결합 중 하나인 ${\pi}-{\pi}$ interaction을 양자역학 계산을 통해 정확한 예측이 가능한지 알아보았다. ${\pi}-{\pi}$ interaction이란 생채 내, 의약 화합물에서 발견되는 결합이기 때문에, 단백질과 결합하는 구조의 예측에 중요하다고 할 수 있다. 본 실험은 ${\pi}-{\pi}$ interaction을 갖는 Sandwich, T shape, 그리고 Parallel displaced 세 가지 모형과 각각의 모형 아래에 분자를 하나 더 쌓은 모형을 추가하여 양자역학 재산을 수행하였다. 양자역학 계산은 DFT의 세가지 함수 M06_2X, M05_2X, B3LYP를 이용하였다. 실험결과에서 세 가지 함수가 각기 다른 결과를 보였는데, 상대적으로 B3LYP의 경우에는 세가지 모델에서 모두 제대로 된 에너지 변화를 계산하지 못하였으며, M06_2X와 M05_2X의 결과에서는 거리에 따른 ${\pi}-{\pi}$ interaction 에너지의 변화를 정확하게 계산하였다. 이러한 결과를 바탕으로, 양자역학의 방법을 통해 MM에서는 예측이 불가능한 ${\pi}-{\pi}$ interaction을 계산 할 수 있고 이 부분을 고려하여 화합물 간의 결합구조를 예측을 향상시킬 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.