• 제목/요약/키워드: 결과예측

검색결과 20,663건 처리시간 0.043초

델파이 방법을 이용한 기술예측의 신뢰도 분석 (An Analysis on the Reliability of Technology Forecasting using the Delphi Method)

  • 윤윤중;이종일
    • 한국기술혁신학회:학술대회논문집
    • /
    • 한국기술혁신학회 1998년도 춘계정기학술대회
    • /
    • pp.14-14
    • /
    • 1998
  • 기술추세분석(trend analysis)이나 특허분석(patent analysis) 등과 같이 객관적 자료를 이용하는 여타 기술예측방법과 달리, 델파이 방법은 해당 분야에 대한 전문가들의 식견(또는 주관적 평가)을 예측의 유일한 원천으로 하고 있다는 점에서 예측결과에 대한 신뢰도 분석을 강하게 요구하고 있다. 이러한 점에 착안하여 본 연구에서는 최근에 실시된 산업기술예측(1998) 자료를 이용하여 델파이 방법을 이용한 기술예측의 신뢰도 분석을 실시하였다. 이러한 분석은 전문가들의 예측결과에 대해 내적 일관성의 유지 여부와, 전문도가 상이한 집단간에 예측 결과의 차이가 있는지 여부를 중심으로 이루어졌으며 그 결과는 다음과 같다. 첫째, 응답 결과에 내적 일관성이 있는지 여부를 검정한 결과 생물·정밀화학분야를 제외한 모든 분야에서 일관성을 지니고 있는 것으로 나타나고 있다. 두번째, 전문도가 높은 응답자들일수록 자신의 예측결과를 확신하고는 있으나, 전문도가 낮은 응답자들에 비해 예측결과에 이견이 큰 것으로 분석되었으며, 마지막으로 전문도가 높은 응답자들과 그렇지 않은 응답자들 사이에 기술과제의 예상 실현시기에 대해서는 거의 차이가 없는 반면, 합의(consensus)의 정도는 큰 차이가 있는 것으로 나타났다. 이러한 분석결과는 델파이 방법을 이용한 기술예측을 설계하는 데 있어 몇가지 시사점을 제공하고 있다. 첫번째로 기술예측시 전문가들의 예측결과에 대해 내적 일관성이 존재하는 지 여부를 검증할 수 있도록 예측과정을 설계하는 것이 바람직하다는 것이다. 이러한 설계과정은 델파이 방법이 예측결과를 검증할 만한 객관적인 장치를 지니지 못하고 있다는 점에서 더욱 필요하다고 하겠다. 두번째는 정보로서의 가치가 큰 전문도가 높은 응답자들의 예측결과를 활용하기 위해서는, 예측결과에 대한 이들의 합의(consensus)의 정도를 높일 수 있는 방안이 마련되어야 한다는 것이다. 델파이의 최종 라운드가 진행된 이후 이들에 대해서만 추가적인 라운드를 실시하거나, 예측과정에서 이들에게 관련 정보를 제공하는 것도 하나의 대안이 될 수 있을 것이다.

  • PDF

협업필터링 추천시스템에서 개인별 선호도의 표준화에 따른 예측성능의 영향

  • 이희춘;김선옥;이석준
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 추계학술대회
    • /
    • pp.597-602
    • /
    • 2007
  • 본 연구는 추천시스템에서 협업필터링 알고리즘을 이용하여 특정 상품에 대한 고객의 선호도를 예측함에 있어 고객이 상품에 대해 평가한 선호도 평가치를 고객별로 표준화시켜 예측하여 기존의 예측 정확도를 향상시키는 방법에 대하여 연구하였다. 일반적으로 상품에 대한 고객의 선호도를 평가하기 위하여 절대적 기준의 수치적 척도가 제공되지만 개인에 따라서는 상품에 대한 선호 정도가 절대적 척도에 다르게 반영되어 개인별 선호도에 차이가 발생할 수 있다. 이러한 개인적 특성이 동일한 척도의 평가치로 예측되면 예측 결과의 오차를 크게 할 가능성이 있다. 또한 개인이 평가한 선호도 평가치의 편차가 협업필터링 알고리즘을 통한 선호도 예측 정확도와 밀접한 관계를 가지고 있음을 알 수 있었으며 이러한 문제를 해결하기 위하여 개별 고객이 평가한 선호도 평가치를 표준화시켜 표준화된 선호도 평가치를 이용한 선호도 예측을 실시하였다. 분석결과 표준화된 선호도 평가치를 이용한 예측 결과가 비표준화 선호도 평가치를 이용한 예측 결과보다 예측력이 우수함을 알 수 있었으며 결과에 대한 통계적 분석을 통하여 표준화된 선호도 평가치를 이용한 선호도 예측 방법과 비 표준화 선호도 평가치를 이용한 선호도 예측 방법을 혼합할 경우 선호도 예측 정확도를 더 향상시킬 수 있음을 알 수 있었다.

  • PDF

협력적 필터링 추천시스템에서 이웃의 수를 이용한 선호도 예측보정 방법

  • 이석준;김선옥;이희춘
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2009년도 춘계학술대회 미래 IT융합기술 및 전략
    • /
    • pp.27-31
    • /
    • 2009
  • 본 연구는 웹상에서 거래되는 아이템을 고객에게 추천하는 추천시스템에서 추천대상 고객의 정보와 이웃 고객의 정보를 이용한 협력적 필터링 추천기법에서 선호도 예측을 위해 필요한 이웃의 수가 선호도 예측 정확도에 영향을 주고 있음을 제시하고 이를 이용한 선호도 예측치의 보정 방법에 대하여 제안한다. 본 연구의 제안을 위하여 이웃 기반의 협력적 필터링 알고리즘과 대응평균 알고리즘을 이용하여 MovieLens 1 million dataset에 대하여 선호도 예측 정확도를 분석하고 분석결과를 토대로 개별 선호도 예측에 소요된 이웃의 수와 예측 정확도의 관계를 분석하였다. 분석결과를 이용하여 이웃 수에 따라 선호도 예측 결과를 다수의 집단으로 구분하여 각 집단에서 이웃의 수를 이용한 선호도 예측 정확도 향상에 대한 방법을 제안한다. 본 연구의 제안을 통하여 기존 선호도 예측 알고리즘으로 생성된 예측 결과에 선호도 예측 과정에서 부가적으로 발생한 정보를 추가하여 최종 예측 결과를 향상시킬 수 있을 것으로 기대한다.

  • PDF

정수장 생산량 예측모델 개발 (A Development of Water Supply Prediction Model in Purification Plant)

  • 소병진;권현한;박래건;최병규
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.171-171
    • /
    • 2011
  • 상수도의 합리적인 운용과 관리를 위해서는 급수량 예측이 매우 중요하다. 기존 급수량 예측은 신경망과 칼만 필터법을 사용한 연구들이 대부분이었다. 이러한 연구결과들은 높은 상관결과를 갖고 있지만 이는 자기상관계수에 대한 높은 의존도에 따른 결과로 볼 수 있다. 즉, 예측의 결과가 전날 수요량을 거의 그대로 따라오는 경향을 띄어, 급수량 예측 그래프가 기존 그래프를 오른쪽으로 이동시킨 것과 같이 나타난다. 본 연구에서는 이러한 문제점들을 해결하기 위해서 물수요량을 예측하는데 있어서 효과적인 예측인자를 도출하는 것이 우선되어야 할 것으로 판단되었다. 이에, 물수요량 특성을 효과적으로 나타내어 줄 수 있는 예측인자로서 강수량, 최저온도, 최고온도, 평균온도 등을 1차적으로 선정하였다. 이들 예측인자들과 서울시 물수요량과의 상관성을 평가하여 최적의 예측인자 Set과 지체시간 등을 산정하였다. 이렇게 선정된 예측인자와 Bayesian 통계기법 기반의 회귀분석 모형을 구축하여 물수요량을 예측하였다. 본 연구에서 적용하고자 하는 계층적 Bayesian 모형은 유사한 특성을 가지는 자료계열들 사이에서 서로 보완이 될 수 있는 정보들을 추출함으로써 모형이 갖는 불확실성을 상당히 줄일 수 있는 방법이다. 이러한 모형적 특징은 생산량 예측에 대한 불확실성 저감 측면에서 장점이 있을 것으로 판단된다. 본 연구에서는 광암, 암사, 구의, 뚝도, 영등포, 강북 정수장을 대상으로 모형의 적합성을 평가하였다. 이러한 연구결과는 향후 정수장 운영계획 및 동일한 시스템을 갖는 상수도 급수량 예측 시 유용하게 사용할 수 있을 것이다.

  • PDF

기술예측결과의 한ㆍ일 국제 비교분석(전자ㆍ정보ㆍ통신분야를 중심으로)

  • 이형진;정용일
    • 한국기술혁신학회:학술대회논문집
    • /
    • 한국기술혁신학회 2000년도 춘계학술대회
    • /
    • pp.278-300
    • /
    • 2000
  • 일본에서는 이미 1997년에 제 6회 기술예측조사를 실시하여 2025 년까지의 미래기술예측을 실시하였고 우리나라에서도 1998 년 6 월부터 약 1 년 반동안 중장기 기술예측을 실시하여 1999 년 11 월에 제 2 회 과학기술예측 결과를 발표하였다. 양국의 전자 정보ㆍ통신분야의 기술예측 결과를 비교ㆍ분석하여 양국의 기술예측결과의 특징을 살펴보고 정책적 활용방법을 모색해 본다.

  • PDF

XML기반의 유전자 예측결과 분석도구 (An XML-Based Analysis Tool for Gene Prediction Results)

  • 김진홍;변상희;이명준;박양수
    • 정보처리학회논문지D
    • /
    • 제12D권5호
    • /
    • pp.755-764
    • /
    • 2005
  • 생명체의 주된 기능 요소인 유전자를 모두 식별하는 작업의 중요성이 증가함에 따라, 최근에 유전자 예측도구들이 활발히 개발되고 있다. 그러나 유전자 예측 프로그램들은 예측 결과를 그들 고유의 형식으로 제공하여 사용자가 그 결과를 이해하기 위해서는 상당히 많은 추가적인 노력이 필요하다. 따라서 유전자 예측결과에 대한 표준화된 표현과 유전자 데이터 집합에 대한 예측결과를 자동으로 계산하는 방법을 지원하는 것이 바람직하다. 본 논문에서는 다양한 유전자 예측 정보에 대한 효과적인 XML 표현과 이를 바탕으로 예측된 유전자 결과를 자동으로 분석하는 in 기반 분석 도구에 대하여 기술한다. 개발된 도구는 유전자 예측도구를 사용하는 사용자들이 편리하게 예측결과를 분석하고 예측결과에 대한 통계결과를 자동으로 산출할 수 있도록 지원한다. 도구의 유용성을 보여주기 위하여 널리 사용되는 유전자 예측 도구인 GenScan과 GeneID의 처리결과를 개발된 도구에 적용시켜 보았다.

주단위 지하수위 예측 모의를 위한 강우 예측 자료의 적용성 평가: 플로리다 템파 지역 사례를 중심으로 (Assessing the Utility of Rainfall Forecasts for Weekly Groundwater Level Forecast in Tampa Bay Region, Florida)

  • 황세운;아세파 터루소;장승우
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.1-9
    • /
    • 2013
  • 미래 기후 정보를 이용한 수문 환경의 단기 미래 예측은 안정적 수자원 공급을 위한 필수적 과제이다. 미국 플로리다 주 중서부 템파지역에서는 주요 수자원 중 하나인 지하수의 효과적 활용을 위해 지하수위 인공신경망 모델 (GWANN)을 개발하여 피압 대수층과 비피압 대수층에 대한 주 단위 평균 지하수위를 월별로 예측하고 그 결과를 수자원 공급 의사 결정에 반영하고 있다. 본 논문은 템파지역에 대한 GWANN 모델을 이용한 지하수위 예측 시스템을 소개하고 모델의 기후 입력 자료의 민감도를 분석함으로써 양질의 기후 정보에 대한 현 시스템의 활용성을 검토하였다. 2006년과 2007년에 대한 연구 결과, 관측 자료를 최적 예측 시나리오 (the best forecast)로 가정하여 적용한 결과는 지하수위 관측 지점에 따라 큰 차이를 보였지만 일반적으로 현 시스템 (현 시점의 실시간 주 단위 평균 강우량을 향후 4주간 동일하게 적용함) 에 비해 예측 성능이 개선되는 것으로 나타났다. 더불어 강우 관측 자료의 백분위 (percentile forecast; 20분위, 50분위, 80분위)를 강우 예측 자료로 활용한 경우에도 현 시스템과 비교하여 일부 나은 결과를 보여주었다. 그러나 지하수위 예측 모델을 활용하지 않고 현 시점의 지하 수위가 지속된다고 가정하는 경우 (na$\ddot{i}$ve model) 향후 2주간의 예측 결과가 best forecast 경우에 비해 높은 정확도를 보이는 등, GWANN 모델의 단기 예측에 대한 양질의 강우 예측 정보의 활용성은 낮으며, 향후 3주 이상에 대한 예측 성능에 있어 best forecast결과가 na$\ddot{i}$ve model 결과에 비해 높은 정확도를 보이기 시작하는 것으로 나타났다. 또한 GWANN 모델의 예측 성능은 적용 기간과 지역 및 지하대수층의 특성에 따라 큰 다양성을 가지는 단점을 보여 강우 예측 자료 활용에 앞서 모델 개선의 필요성이 있다고 판단된다. 본 연구는 단기수자원 공급 계획 수립을 위하여 사용되는 지역 모델링 시스템에 대한 기후 예측정보의 활용성 평가를 위한 방법론으로 고려될 수 있을 것으로 기대된다.

유전자 알고리즘을 활용한 인공지능 예측모형간 결합 기법: 주식시장에의 응용

  • 안현철;이형용
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2008년도 춘계학술대회
    • /
    • pp.141-148
    • /
    • 2008
  • 각종 인공지능 기법들을 활용하여, 주식시장의 흐름을 예측하려는 연구가 지금까지 많은 인공지능 및 금융공학의 연구자들에 의해 시도되어 왔으며, 그 결과 다양한 인공지능 기법들이 예측 방법론으로 제시되어 왔다. 이런 가운데 서로 다른 예측모형들이 산출하는 예측결과를 종합 - 보완하는 결합기법에 관련된 연구가 90년대 후반부터 오늘날까지 꾸준하게 발표되고 있다. 본 연구 역시 유전자 알고리즘 기반의 새로 인공지능 예측모형간 결합기법을 제시하고 있다. 다만, 기존의 연구모형들이 각 개별모형 결과의 상대적 가중치에 초점을 맞추고 있었다면, 본 연구의 제안모형은 등락을 판단하는데 활용되는 임계치까지 유전자 알고리즘을 이용해 동시에 최적화하도록 설계되어 있다는 점에서 차별화된다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 지난 1998년부터 2007년까지의 KOSPI 지수 등락 예측을 위해 구축된 로지스틱 회귀모형, 인공신경망, SVM모형의 결과들을 제안모형을 이용해 결합하였다. 그 결과, 예측력 향상에 본 연구의 제안모형이 기여 할 수 있음을 확인 할 수 있었다.

  • PDF

강우 및 홍수 예측을 위한 수치예보자료의 적용 및 정확도 개선 (Application and Accuracy Improvement of Numerical Weather Prediction Data for Rainfall and Flood Forecasting)

  • 문혜진;정관수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.10-10
    • /
    • 2018
  • 기후변화로 인한 집중호우의 빈도 및 강도가 증가하여 치수 구조물의 설계 홍수 빈도를 초과하는 피해가 발생하고 있다. 본 연구에서는 이러한 침수 피해를 저감하기 위해 수치예보자료를 활용한 홍수 예 경보시스템의 적용성을 비교 평가하였다. 수치예보자료는 국내 기상청에서 제공하는 국지예보모델(LDAPS)과 일본 기상청의 중규모모델(Meso-scale Model ; MSM)을 이용하였으며, 남강댐 유역 내의 산청 유역에 대해 태풍 및 정체 전선 등 3 개의 강우사상을 선정하였다. 강우유출 해석에는 분포형 수문 모형인 KWMSS(Kinematic Wave Method for Subsurface and Surface)를 이용하였다. 그 결과, LDAPS와 MSM 모두 강우발생 유무를 잘 재현하였다. 특히, 광역적 강우인 태풍사상에 대해 강우 예측에서 비교적 높은 정확도를 나타내었다. 강우 예측의 정확도 향상을 위해 강우장의 공간 변위를 고려하여 앙상블 강우 분포를 적용한 결과, 강우 예측의 정확도가 향상되는 것으로 나타났다. 홍수 예측의 경우 두 수치예보자료 모두 유출 패턴을 잘 재현하였다. 앙상블 홍수 예측 결과, 단일 강우 자료를 통한 홍수 예측에서의 예측 불확실성을 개선하는 것으로 나타났다. 3개의 강우 사상에 대해 MSM의 예측 결과가 LDAPS의 예측 결과보다 비교적 높은 상관관계를 나타내었다. 본 연구를 통해 강우 및 홍수 예측에 수치예보자료의 적용 가능성이 있다고 판단되며, 홍수 예 경보의 기초자료로 활용성이 있다고 판단된다.

  • PDF

예측과 정서가 후견지명 편향에 끼치는 영향 (The Effect of Prediction and Emotion on Hindsight Bias)

  • 김성은;현주하;한광희
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 2부
    • /
    • pp.475-481
    • /
    • 2008
  • 본 연구는 어떤 사건에 대한 예측 정확성 여부와 기억을 회상할 때의 정서 상태가 후견지명 편향 (hindsight bias)에 미치는 영향을 알아보고자 하였다. 이에 valence 축에 따라 긍정적 정서와 부정적 정서를 일으키는 두 가지 음악을 제시하고 두 조건에 대하여 기억에 대한 과잉 확신이 얼마나 달라지는가를 분석하였다. 예측 정확성 여부에 대해서는 실험 결과 데이터 중 예측 일치 조건과 불일치 조건으로 나누어 후견지명 편향에 끼치는 영향과 정서와의 상호작용이 있는가를 분석하였다. 사람들은 예측과 반대되는 결과를 접했을 때 결과에 anchoring하여 기억을 회상하려는 편향이 더욱 커졌으며 부정적인 정서보다 긍정적 정서 상태일 때 후견지명 편향이 더욱 커졌음을 밝혔다. 특히 예측과 상이한 결과 피드백을 받고 긍정적 정서 상태일 때 가장 많은 왜곡 현상을 보였으며, 예측 불일치/ 부정적 정서 조건, 예측 일치/ 긍정적 정서 조건, 예측 일치/ 부정적 정서 조건 순으로 후견지명 편향을 보였다. 이 결과는 정서 상태보다 어떤 사건에 대한 예측 정확성 여부가 후견지명 편향에 더 큰 영향을 준다는 것을 시사한다. 본 연구의 실험실 상황을 통하여 자기와 관련이 없는 중립적 과제를 통해서도 후견지명 편향이 나타남을 알 수 있었다. 특히 그 동안 거의 이루어지지 않았던 정서와 후견지명 편향의 관계를 밝히고, 기존의 예측 정확성에 따른 편향을 설명하는 모델간 논쟁이 많았으나 실험 결과가 motivational model을 지지함을 밝혔음에 의의가 있다.

  • PDF