• Title/Summary/Keyword: 격틀

Search Result 49, Processing Time 0.019 seconds

The Classification of Korean Adjectives using Case Frame Set (격틀집합을 이용한 한국어 형용사 유형 분류)

  • Jeon, Ji-Eun;Choe, Jae-Woong
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.254-261
    • /
    • 2006
  • 형용사 분류에 격틀이 중요한 역할을 한다는 주장은 여러 연구에서 제기된 바 있다. 본 연구에서는 격틀이 의미 분류에 기여하는 바를 보다 체계적으로 검토하기 위하여 '격틀집합'을 활용한다. 격틀집합은 한 개의 어휘가 취할 수 있는 격틀의 집합을 말한다. 격틀집합에 근거하여 형용사를 분류할 경우, 의미적으로 연관성이 높은 그룹으로 나뉠 수 있다는 가설을 바탕으로 이러한 가설의 타당성을 검증하고 이를 입증하는 것이 본 연구의 목적이다. 아울러 본 연구에서는 그러한 가설을 검증하기 위한 구체적인 방법론을 제시한다. 격틀집합정보는 세종전자사전에 들어있는 어휘별 격틀정보를 추출하여 활용한다. 본 연구 결과 도출된 총 101개의 격틀집합 중에서 한 개의 격틀만을 갖는 유형과 어휘목록이 5개미만인 유형을 제외한 12개의 격틀집합이 주요 분석 대상으로, 본 연구에서는 그 중에서 6개를 자세히 분석한다. 격틀집합별 어휘들을 살펴보면 의미적 연관성이 파악되지 않는 어휘들도 일부 포함되어 있기는 하나, 대부분은 의미적으로 상관관계가 있음을 확인할 수 있었다 이와 같은 방법론을 통해 국어 형용사 전체의 유형, 더 나아가 국어 용언을 분류하는데 본 연구의 가설과 방법론이 활용될 수 있다.

  • PDF

Study on Automatic Construction and Evaluation method of Caseframe (격틀 자동구축과 격틀평가 방법에 관한 연구)

  • Choi, Yong-Seok;Lee, Ju-Ho;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.272-279
    • /
    • 1999
  • 격틀이란 동사에 대해 필요한 격들과 그 격에 알맞은 단어집합으로 이루어져 있는 것으로 명사와 동사의 의미적 호응을 표현한다. 격틀은 자연언어처리분야에서 주요한 정보로 사용할 수 있다. 의미구분이라든지 번역에서 한국어 생성, 정보검색에서 중요정보 추출 등 잘 구성한 질 높은 격틀은 여러 연구의 질을 높여줄 수 있다. 따라서, 질 좋은 격틀을 구성하기 위한 여러 노력들이 현재 이루어지고 있다. 본 논문에서는 기계 가독형 사전과 말모듬을 이용해서 자동으로 격틀을 구성한다. 자동구성 방법으로 먼저 기계가독형 사전을 이용해서 상위개념 정보를 가지는 분류정보를 구성한다. 말모듬과 사전의 예문들을 형태소 분석한 후에 각각의 예문들을 분류정보를 이용하여 최상위 개념으로 바꾼다. 그리고, 말모듬과 사전의 예문에서 나온 정보들을 통합하므로 해서 자동으로 격틀을 구성한다. 자동으로 격틀을 구성한 후에 수동으로 구성한 격틀과 비교해 본다. 비교하기 위한 평가방법에 대해서 논의한다.

  • PDF

Similar Verb Words Extraction based on their Case Frame Structure (격틀 구조에 기반한 유사 동사 추출)

  • Cho, Junghyun;Jung, Hyunki;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.219-224
    • /
    • 2009
  • 한국어 Propbank를 구축하기 위해서는 유사 동사를 군집화하고 군집에 포함되는 동사들의 구문 및 의미 특성을 모아놓은 정보가 필요하다. 본 연구에서는 이러한 군집화의 초기 단계로써 개별 동사들의 격틀 구조에 기반하여 동사간의 유사도를 추정하여 유사 동사를 추출하고자 하였다. 본 연구는 개별 동사의 격틀 정보를 추출하기 위하여 세종 계획의 용언 사전과 KAIST 언어자원의 동사 격틀 사전을 활용하였다. 또한 격틀을 세분화하여 보다 상세한 격틀 정보를 생성하기 위하여 격틀이 가지고 있는 논항의 특성을 활용하였다. 동사의 유사도를 측정하기 위하여 개별 동사들은 벡터로 표현하였고, 벡터의 원소는 해당 동사가 다른 동사와 세분화된 격틀을 공유하는 정도로 하였다. 실험에서는 두 용언 사전에서 개별적으로 위의 과정을 진행하여 각 동사와 유사한 동사들을 추출하였다.

  • PDF

Post-processor of Parsing Results Using Case Frames (한국어 동사의 격틀 정보를 이용한 구문분석 후처리기)

  • Jeon, Eun-Hee;Lee, Song-Wook;Seo, Jeon-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.445-449
    • /
    • 2001
  • 언어를 컴퓨터로 처리하기 위한 방법으로 격문법(Case Grammar)을 사용하는 것이 있다. 격문법은 동사에 대한 격틀(Case Frame)을 기술함으로써 그 동사와 의미적으로 관계를 가지는 명사들에 대해 표현하는 것이다. 따라서 이러한 격 문법을 사용하기 위해서는 동사에 대한 격틀을 기술하는 것이 필수 과제이다. 본 연구에서는 동사에 대한 격틀을 기술하기 위해서 말뭉치에서 직접 사용된 명사-조사 쌍과 동사를 추출하여 이들의 격관계를 결정하고 이 자료들을 모두 동사의 격틀 정보로 사용하였다 이렇게 구축된 격틀 자료를 구문분석의 후처리 단계에 적용하여 구문분석 결과 잘못된 명사-조사 쌍 의존관계를 수정하였다.

  • PDF

A Caseframe Structure of Concept-Based Topic Fusion for Text Summarization System (문서 요약 시스템을 위한 대표 개념어 생성의 격틀 구성)

  • 김성규;김미진;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.181-183
    • /
    • 1999
  • 대량의 정보를 빠르고 쉽게 검색하기 위한 많은 문서 자동 요약 시스템이 개발되고 있다. 현재에는 원문에서의 추출을 통한 방법 뿐 아니라 요약문의 생성에 초점을 두고 요약 시스템을 위해 대표 개념어 생성기를 위한 구성 방안을 제시한다. 격틀 구성을 위한 단계별 과정과 핵심어의 추출, 그리고 격틀 구성의 제한 요건을 서술한다.

  • PDF

Extraction of the Training Data for Building Case Frames from a Corpus (말뭉치로부터 격틀 구축에 필요한 학습 데이터 추출)

  • Yang, Dan-Hee;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.287-292
    • /
    • 1998
  • 실용적인 격틀(Case frame) 정보를 말뭉치로부터 자동구축하기 위해서는 대량의 홀문장이 필요하다. 그리고 국어 문장 형식은 영어와 많은 차이점이 있다. 또한 기존의 격틀 구축 연구에서 전제했던 광범위한 학습 데이터와 언어학적 지식은 국어에 대해 현재 존재하지 않는다. 그러므로 본 연구는 그러한 문제점들을 밝히고 현실적인 접근 방법을 제시한다. 그리고 겹문장을 홑문장 형태의 문장들로 바꾸기 위한 알고리즘을 제시한다.

  • PDF

Korean Semantic Role Labeling using Case Frame and Subcategory of Predicate (한국어 격틀 사전과 용언의 하위 범주 정보를 사용한 한국어 의미역 결정)

  • Kim, Wansu;Ock, CheolYoung
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.198-201
    • /
    • 2015
  • 의미역 결정은 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 문제이다. 본 논문에서는 UPropBank 격틀 사전과 UWordMap의 용언의 하위 범주 정보를 이용하여 의미역을 부착하였다. 실험 결과 80.125%의 정확률로 의미역을 부착하는 성능을 보였다.

  • PDF

A Similarity-based Dialogue Modeling with Case Frame and Word Embedding (격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링)

  • Lee, Hokyung;Bae, Kyoungman;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드 임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF

Restoring an Elided title for Encyclopedia QA System (백과사전 질의응답을 위한 생략된 표제어 복원에 관한 연구)

  • Lim Soojong;Lee Changi;Jang Myoung-Gil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.541-543
    • /
    • 2005
  • 백과사전에서 정답을 찾기 위해 문장의 구조를 분석하는데 한국어 백과사전은 표제어에 대한 정보를 문장에서 생략한다. 그러나 표제어는 문장에서 주어나 목적어 역할을 하기 때문에 생략된 정보를 복원하지 못 하면 질의에 대한 정답을 제시할 수 없다. 생략된 표제어에 대한 정보를 복원하기 위해서 본 연구에서는 표제어의 의미범주 정보, 격틀, Maximum Entropy 모델을 이용하여 표제어 주어, 표제어 목적어 복원, 미복원 3가지로 인식한다. 표제어 의미범주는 의미 범주에 대해 일정 수준의 복원 성향을 보일 경우 Maximum Entropy 정보를 창조하였고 격틀을 이용하여 복원 여부를 결정한다. 만약 표제어의 의미범주 정보, 격틀을 이용하여도 복원 여부를 결정하지 못할 경우에는 Maximum Entropy 모델에 기반한 통계 기법을 적용하여 복원 여부를 결정한다. 그리고 각각 방법의 단점을 보완하기 위해서 규칙에 해당하는 표제어 의미범주 정보와 격틀 정보에는 통계 모델인 ME 모델을 보완하여 사용한다.

  • PDF

A Similarity-based Dialogue Modeling with Case Frame and Word Embedding (격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링)

  • Lee, Hokyung;Bae, Kyoungman;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF