• Title/Summary/Keyword: 격자필터

Search Result 204, Processing Time 0.025 seconds

Magnetic Field Inversion and Intra-Inversion Filtering using Edge-Adaptive, Gapped Gradient-Nulling Filters: Applications to Surveys for Unexploded Ordnance (UXO)

  • Rene, R.M.;Kim, K.Y.;Park, C.H.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.9-14
    • /
    • 2006
  • Estimations of depth, magnetic orientation, and strength of dipole moments aid discrimination between unexploded ordnance (UXO) and non-UXO using magnetic surveys. Such estimations may be hindered by geologic noise, magnetic clutter, and overlapping tails of nearby dipole fields. An improved method of inversion for anomalies of single or multiple dipoles with arbitrary polarization was developed to include intra-inversion filtering and estimation of background field gradients. Data interpolated to grids are flagged so that only nodes nearest to measurement stations are used. To apply intra-inversion filtering to such data requires a gapped filter. Moreover, for data with significant gaps in coverage, or along the edges or corners of survey areas, intra-inversion filters must be appropriately modified. To that end, edge-adaptive and gapped gradient-nulling filters have been designed and tested. Applications are shown for magnetic field data from Chongcho Lake, Sokcho, Korea and the U. S. Army's Aberdeen Proving Ground in Maryland.

  • PDF

Pipelining of orthogonal Double-Rotation Digital Lattice Filters for High-Speed and Low-Power Implementation (고속 및 저파워 실현을 위한 직교 이중 회전 디지털 격자 필터의 파이프라인화)

  • 정진균;엄경배
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2409-2417
    • /
    • 1994
  • The ODR(orthogonal double-rotation) digital lattice filters have desirable properties for VLSI implementation such as local connection, regularity and pipelinability. These filters are also known to exhibit good numerical behavior for finite precision implementation. Although these filters can be pipelined by the cut-set localization procedure, it should be noted that the maximum sample rate obtained by this technique is limited by the feedback computations. In this paper, a pipelining method for the ODR digital lattice filter is proposed, by which the sample rate can be increased at any desired level. it is also shown that the low-power CMOS digital implementation of ODR digital lattice filters can be done successfully using our pipelining method. The pipelining method is based on the properties of the Schur algoithm, constrained filter design methods, and the polyphase decomposition technique.

  • PDF

Novel Variable Step-Size Gradient Adaptive Lattice Algorithm for Active Noise Control (능동 소음 제어를 위한 새로운 가변 수렴 상수 Gradient Adaptive Lattice Algorithm)

  • Lee, Keunsang;Kim, Seong-Woo;Im, Jaepoong;Seo, Young-Soo;Park, Youngcheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.309-315
    • /
    • 2014
  • In this paper, a novel variable step-size filtered-x gradient adaptive lattice (NVSS-FxGAL) algorithm for active noise control system is proposed. The gradient adaptive lattice (GAL) algorithm is capable of controlling the narrow band noise effectively. The GAL algorithm can achieve both fast convergence rate and low steady-state level using the variable step-size. However, it suffers from the convergence performance for varying signal characteristic since the global variable step-size is equally applied to all lattice stages. Therefore, the proposed algorithm guarantees the stable and consistency convergence performance by using the local variable step-size for the suitable each lattice stage. Simulation results confirm that the proposed algorithm can obtain the fast convergence rate and low steady-state level compared to the conventional algorithms.

Design of Polarization-Insensitive Directional Couplers and Multimode Interference Couplers Integrated with Bragg Grating Waveguide (Bragg 격자구조가 집적된 편광 무의존성 방향성 결합기와 다중모드 간섭 결합기의 설계)

  • Ho, Kwang-Chun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.295-302
    • /
    • 2007
  • This paper presents a rigorous comparison of the design characteristics of polarization-insensitive directional coupler (DC) and multimode interference (MMI) coupler based on rib type waveguides, by using longitudinal modal transmission-line theory (L-MTLT). It shows that the multimode mixing and interference property of MMI can be structurally designed through the continuous evolution of the two-mode coupling property of DC. It also compares and analyzes the coupling efficiency along with the coupling length and the wavelength between polarization-insensitive DC and MMI. From the design properties obtained, it demonstrates for the first time the integration of polarization-insensitive DC or MMI with a Bragg grating and evaluates precisely the filtering characteristics. The numerical results reveal that the DC, as long as it is designed to have the same coupling length for TE and TM modes, has better performance than the MMI in polarization-insensitive filtering behaviour. However, it shows that the MMI with much less coupling length than DC is preferred in the miniaturization of integrated devices.

Misclassified Area Detection Algorithm for Aerial LiDAR Digital Terrain Data (항공 라이다 수치지면자료의 오분류 영역 탐지 알고리즘)

  • Kim, Min-Chul;Noh, Myoung-Jong;Cho, Woo-Sug;Bang, Ki-In;Park, Jun-Ku
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 2011
  • Recently, aerial laser scanning technology has received full attention in constructing DEM(Digital Elevation Model). It is well known that the quality of DEM is mostly influenced by the accuracy of DTD(Digital Terrain Data) extracted from LiDAR(Light Detection And Ranging) raw data. However, there are always misclassified data in the DTD generated by automatic filtering process due to the limitation of automatic filtering algorithm and intrinsic property of LiDAR raw data. In order to eliminate the misclassified data, a manual filtering process is performed right after automatic filtering process. In this study, an algorithm that detects automatically possible misclassified data included in the DTD from automatic filtering process is proposed, which will reduce the load of manual filtering process. The algorithm runs on 2D grid data structure and makes use of several parameters such as 'Slope Angle', 'Slope DeltaH' and 'NNMaxDH(Nearest Neighbor Max Delta Height)'. The experimental results show that the proposed algorithm quite well detected the misclassified data regardless of the terrain type and LiDAR point density.

A Study on the Flow Characteristics according to the Change of Structure in Filtration Using the Numerical Model (수치모형을 이용한 여과기 내 구조 변경에 따른 유동특성 연구)

  • Kim, Taewon;Song, Sooho;Choi, Changhyung;Park, Youngjin;Kim, Jiho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.285-285
    • /
    • 2017
  • 최근 전 세계적으로 심각해지는 물 부족 현상과 수질오염으로 대량의 원수를 빠른 시간 내에 여과하기 위한 여과장치의 개발 및 효율성 향상을 위한 연구의 필요성이 증가되고 있다. 특히 여과필터의 내부구조에 의해 유동이 편중되는 현상이 발생하면 여과효율 및 여과필터 유지관리에 문제가 발생되기 때문에 최적의 여과필터를 설계하는 것이 중요하다. 이에 본 연구에서는 수리모형실험으로 검토하기에 어려움이 있는 여과기 내부구조에 대한 유동특성을 수치해석을 이용하여 검토하였다. 수치해석은 유한요소법 기반의 수치모형으로 여과기 내부를 상세하게 모의할 수 없기 때문에 유한체적법 기반인 ANSYS CFX 모형을 이용하였다. 여과기 내 여과필터는 두께 2.0 mm, 공극율 25%로 가정하고 다공성 기법(porous media)을 적용하였다. 검토를 위한 경계조건은 유입부에 목표 취수량, 유출부에 대기압 조건을 적용하였으며, 여과기에 비해 매우 작게 구성된 여과필터 내부의 유동특성을 검토하기 위해 여과기는 최소 3.0 mm, 여과필터는 1.0 mm의 격자를 적용하였다. 현재 실제 여과시설에 적용되고 있는 여과기 제품 형상을 기준으로 여과기 내부 흐름공간의 크기 및 각도 조정에 따른 유동특성을 검토하여 여과효율을 비교하였으며 통과유량, 유속, 유속벡터 등을 검토하여 균등한 유량과 유속이 발생되는 최적의 여과장치 구조를 도출하였다. 본 연구에서 여과기 내부 구조 변경에 따른 유동특성 검토를 통해 도출된 최적의 여과기 내부크기 및 각도에 대한 설계인자는 여과기 내 여과필터의 효율을 증가시킬 뿐만 아니라 내구성 증진에 도움이 될 것으로 예상된다.

  • PDF

Properties Analysis of Wavelength Selective Filter and Implementation of Demultiplexer using Multiple Writing in Photorefractive Crystal (광굴절결정에서 파장 선택 필터의 특성 분석 및 다중 기록을 통한 역다중화기 구현)

  • Lee, Kwon-Yeon;An, Jun-Won;Kim, Nam
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.6
    • /
    • pp.79-86
    • /
    • 1999
  • We propose a new photorefractive demultiplexer(DMUX) for WDM communicaytion system using a wavelength selectivity and demultiplexing properties of a volume holographic grating filters formed in $LinbO_3$ crystal doped with 0.015wt.% Fe. The wavelength selectivity properties of the filter are analyzed and experimentally investigated as a function of the following parameters : the crossing angle of the two writing beams, the reading-beam angle and writing-beam size. In addition, applying these wavelength selectivity properties and the multiplexing technique for recording multiple-exposure filters with equal diffraction efficiency, some preliminary experimental results are presented for use as DMUX.

  • PDF

Resonance Fiber Bragg Grating Sensor system based on Fourier Domain Mode-locking Laser (분광 영역 모드록킹 레이저를 이용한 공진형 광섬유 격자 센서)

  • Choi, Byeong Kwon;Jeon, Min Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.211-216
    • /
    • 2012
  • We report a resonance fiber Bragg sensor interrogation based on a Fourier domain mode-locking (FDML) laser. The FDML laser is constructed based on a conventional ring laser cavity configuration with fiber Fabry-Perot tunable filter (FFP-TF). There are two sensor parts which are composed with two FBGs inside the laser cavity. Each sensor part provides a separate laser cavity for the FDML laser. The resonance frequencies of the laser cavities are 46.687 kHz and 44.340 kHz, respectively. We applied a static and a dynamic strain on the FBG sensor system. The slope coefficients of the measured relative wavelength shift and relative time interval from the static strain are found to be $0.61pm/{\mu}{\epsilon}$ and $0.8ns/{\mu}{\epsilon}$, respectively.

Simultaneous Measurement of Strain and Damage Signal in Composite Structures Using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 변형률 및 파손신호 동시 측정)

  • Koh, Jong-In;Bang, Hyung-Joon;Kim, Chun-Gon;Hong, Chang-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.43-50
    • /
    • 2004
  • For the simultaneous measurement of strain and damage signal a fiber Bragg grating sensor system with a dual demodulator was proposed. The dual demodulator is composed of a demodulator using a tunable Fabry-Perot filter measuring the low-frequency signal with large magnitude such as strain and the other using a passive Mach-Zehnder interferometer detecting the high-frequency signal with small amplitude such as impact or damage signal. Using the proposed fiber Bragg grating sensor system, both the strain and damage signals of a cross-ply laminated composite beam under tensile loading were simultaneously measured. The strain and damage signals detected by single fiber Bragg grating sensor showed that sudden strain shifts were accompanied with vibration at a maximum frequency of several hundreds of kilohertz at the instant of matrix crack propagation in the 90 degree layer in composite beam.

Accuracy Improvement of FBG Temperature Sensor System (광섬유격자 온도센서의 정밀도 개선)

  • Lee, Hyun-Wook;Song, Min-Ho;Lee, June-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.216-222
    • /
    • 2006
  • We propose the use of the Gaussian-curve fitting algorithm for the improvement of measurement accuracy in wavelengthscanned Fabry-Perot filter based demodulation systems. The peak locations of FBG sensors were calculated from the fitted curves rather than from distorted PD profiles, resulting in much better measurement accuracy than that of the highest-peak search algorithm. Also, the algorithm was proved to minimize measurement uncertainty of spectrally-distorted grating sensors. From our experimental results, a temperature resolution as small as ${\sim}0.3^{\circ}C$ was readily achieved by use of the Gaussian-curve fitting algorithm whereas the highest-peak search algorithm gave a temperature resolution larger than ${\sim}4^{\circ}C$.