• Title/Summary/Keyword: 겔 공극

Search Result 13, Processing Time 0.015 seconds

Evaluation of Shrinkage and Creep Behavior of Low-Heat Cement Concrete (저열 시멘트 콘크리트의 건조수축 및 크리프 거동 평가)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Kim, Si-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • This study examined the long-term inelastic characteristics, including unrestrained shrinkage and creep, of low-heat cement concrete under different ambient curing temperatures. To achieve the designed compressive strength of 42MPa, water-to-binder ratios were selected to be 27.5, 30, and 32.5% for curing temperatures of 5, 20, and $40^{\circ}C$, respectively. Test results showed that the shrinkage strains of concrete mixtures tended to decrease with the decrease in curing temperature because of the delayed evaporation of internal capillary and gel waters. Meanwhile, creep strains were higher in concrete specimens under lower curing temperature due to the occurrence of the transition temperature creep. The design models of KCI provision gave better accuracy in comparison with test results than those of ACI 209, although a correction factor for low-heat cement needs to be established in the KCI provision.

A Study on the Fundamental Properties of Mortar Mixed with Converter Slag and Ferronickel Slag (전로슬래그 및 페로니켈슬래그를 혼입한 모르타르의 기초물성 연구)

  • Kim, Ji-Seok;Park, Eon-Sang;Ann, Ki-Yong;Cho, Won-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.152-160
    • /
    • 2021
  • Converter steel slag(BOF slag) is a vast amount of solid waste generated in the steelmaking process which has very low utilization rate in Korea. Due to the presence of free CaO which can derive bad volume stability in BOF slag, it usually land filled. For recycling BOF and identify its applicability as fine aggregate, this study investigates the fundamental characteristics of mortar with cement replaced ferronickel slag(FNS), which has the potential to be used as a binder. The results suggest that the mineral phases of BOF slag mainly include larnite(CaSiO4), mayenite(Ca12Al14O33) and wuestite(FeO) while olivine crystallines are shown in FNS. The results of flow and setting time reveals that the flowability and process of hardening increased when the amount of FNS and BOF slag incorporated was increased. The length change shows that the amount of change in the length of the mortar was almost constant regardless of mix proportion while compressive strength was reduced. Micro structure test results revealed that FNS or/and BOF slag mix took a long time to react in the cement matrix to form a complete hydration products. To achieve the efficient utilization of B OF slag as construction materials, proper replacement rate is necessary.

Quality Characteristics of Calcium Fortified Yogurt Prepared with Milk Mineral (우유무기질을 첨가하여 제조한 칼슘 강화 요구르트의 품질 특성)

  • Park, Dong June;Oh, Sejong;Imm, Jee-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • This study was conducted to evaluate the potential use of milk mineral (MM) as the calcium source for the production of calcium-fortified yogurt. MM was composed of 83% minerals, 7.5% lactose, 3.3% protein, and < 1% fat. Calcium (Ca) content in MM was about 46%; calcium: phosphorous ratio was 1.28:1. The aqueous solubility of Ca increased with the decrease in pH; the solubility at pH 4 and 5 was 98% and 53%, respectively. Ca-fortified yogurt with up to 200 mg Ca/100 mL did not show significant differences in acid production and number of viable cells; however, the viscosity increased significantly (p<0.05) with the increase in Ca levels. Microstructure analysis of Ca-fortified yogurt using confocal scanning laser microscopy indicated that the protein network became denser with increasing fortification with MM. There was no significant difference in the sensory quality between the control and Ca-fortified yogurts. Therefore, MM could be used for the production of Ca-fortified yoghurt without compromising the quality characteristics of yogurt.