• Title/Summary/Keyword: 겐첸

Search Result 4, Processing Time 0.02 seconds

유한주의와 철학적 해석

  • Park, Jeong-Il
    • Korean Journal of Logic
    • /
    • v.4
    • /
    • pp.37-62
    • /
    • 2000
  • 괴테의 불완전성 정리와 그것의 역사적 배경을 이루었던 힐베르트의 프로그램이 어떤 관계에 놓이느냐 하는 쟁점은 전자가 후자를 논박하느냐 하는 문제로 요약될 수 있다. 전자는 수리논리학에서의 한 정리이고 후자는 어떤 철학적 해석이 요구되는 요소를 지니고 있다. 따라서 전자는 '그 자체만으로는' 후자를 논박할 수 없으며, 어떤 철학적 해석이 부여될 때에만 그런 일은 가능할 수 있다. 후자가 지니고 있는 철학적 요소 중에서 가장 중요한 것은 힐베르트의 "유한주의"의 개념이다. 이 개념에 대해서 어떤 철학적 해석이 부여되느냐에 따라, 전자는 후자를 논박할 수도 있고 그렇지 않을 수도 있다. 특히, 힐베르트의 "유한주의"에 대한 철학적 해석은 괴델의 "특수한 유한주의적" 해석과 겐첸의 "구성주의적 해석"으로 대변할 수 있으며, 각각 논박설과 반논박설의 근거를 제공하고 있다. 결국, 문제는 그러한 철학적 해석들이 힐베르트의 사유에 비추어 얼마나 정당한가 하는 점이다. 이 글에서 나는 겐첸의 해석이 괴델의 해석에 대해 대등하게 경합적일 뿐만 아니라, 어떤 점에서는 힐베르트의 사유에 비추어 더 정당하다는 것을 보이고자 한다.

  • PDF

자름규칙(cut)-제거 연역의 증명 길이에 대하여

  • Kim, Beom-In
    • Korean Journal of Logic
    • /
    • v.6 no.1
    • /
    • pp.69-77
    • /
    • 2003
  • 본 논문은 겐첸의 정식열(sequent) 계산에서 자름규칙(cut)을 제거한 경우 증명의 길이는 어떻게 달라지는가를 다루고 있다. 특히 본 논문은 명제 논리에 있어서 공리를 원자 정식으로만 삼는 체계의 경우 증명의 길이는 번화가 없음을 증명하는 것을 목적으로 한다.

  • PDF

자체적으로 정당한 규칙과 논리상항의 의미

  • Jeong, In-Gyo
    • Korean Journal of Logic
    • /
    • v.6 no.2
    • /
    • pp.1-22
    • /
    • 2003
  • 타당한 논증과 논리적 귀결에 대한 프라위츠와 더밋의 증명 이론적 정의는 그 적절성을 위해 이른바 "근본 가정"과 "도입규칙들은 자체적으로 정당한 규칙들이다"는 두 논제들을 전제하고 있다. 이 글에서는 어떤 규칙들 특히 도입규칙들이 자체적으로 정당하다는 두 번째 논제가 어떻게 이해될 수 있는지 살펴보고, 이 논제를 보다 분명히 드러내 보이려는 한 신도를 비판적으로 검토할 것이다. 그런 과정 중에 이 두 논제의 관계도 보다 분명히 드러내 보일 것이다.

  • PDF

Sequent Calculus and Cut-Elimination (순차식 연산 (Sequent calculus)과 절단제거 (Cut elimination))

  • Cheong, Kye-Seop
    • Journal for History of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.45-56
    • /
    • 2010
  • Sequent Calculus is a symmetrical version of the Natural Deduction which Gentzen restructured in 1934, where he presents 'Hauptsatz'. In this thesis, we will examine why the Cut-Elimination Theorem has such an important status in Proof Theory despite of the efficiency of the Cut Rule. Subsequently, the dynamic side of Curry-Howard correspondence which interprets the system of Natural Deduction as 'Simply typed $\lambda$-calculus', so to speak the correspondence of Cut-Elimination and $\beta$-reduction in $\lambda$-calculus, will also be studied. The importance of this correspondence lies in matching the world of program and the world of mathematical proof. Also it guarantees the accuracy of program.