• Title/Summary/Keyword: 게이지 파손 가능성

Search Result 2, Processing Time 0.018 seconds

Optimal Placement of Strain Gauge for Vibration Measurement : Formulation and Assessment (진동측정을 위한 스트레인 게이지 설치위치 최적화 : 최적화 방법 및 평가)

  • 최창림;양보석;최병근
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.757-766
    • /
    • 2004
  • This paper focuses on the formulation and validation of an automatic strategy to select the optimal location and direction of strain gauges for the measurement of the modal response. These locations and directions are important to render the strain measurements as robust as possible when a random mispositioning of the gauges and gauge failures are expected. The approach relies on the evaluation of the signal-to-noise ratios of the gauge measurements from strain data of finite element. The multi-step optimization strategy including genetic algorithm is used to find the strain gauge locations-directions that maximize the smallest modal strain signal-to-noise ratio in the absence of gauge failure or its expected value when gauge failure is possible. A flat Plate is used to prove the applicability of the proposed methodology and to demonstrate the effects of the essential parameters of the problem such as the mispositioning level, the probability of gauge failure, and the number of gauges.

A Study on the Optimum Design for Preventing Propelling Charge to Military Ammunition Vehicle (탄약운반장갑차의 장약 파손 방지를 위한 최적설계에 관한 연구)

  • Noh, Sang Wan;Kim, Sung Hoon;Park, Young Min;Kim, Byung Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.494-500
    • /
    • 2019
  • The purpose of this study was to determine a method to prevent damage during the transfer of loading through optimal design of loading transfer software for an ammunition-carrying armored vehicle. Typically, an ammunition carrier armored car is equipped with an automated charge transfer system. The load is intermittently damaged during the loading of the cargo, and this needs to be improved. The following improvements and verification tests were carried out. As impact speed increased, the loading speed was reduced 60%, and a special fixture utilizing a force gauge was developed and tested. If the maximum current of 11A for the servo controller is output when the load of the conveyor is generated by interference inside the loading tube, there is a possibility of charge breakage. If the maximum current is low, the load cannot be loaded. In the loading test for the ammunition carrier armored car with the actual charge, the improved design was found to be valid, as the load was not damaged and occurred nominally.