• 제목/요약/키워드: 게시판 활용

검색결과 114건 처리시간 0.022초

관리도를 활용한 국민청원 토픽 모니터링 연구 (Topic change monitoring study based on Blue House national petition using a control chart)

  • 이희연;최지은;이성임;손원
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.795-806
    • /
    • 2021
  • 최근 온라인 채널을 통한 텍스트 자료가 방대해 지면서 이를 요약하고 분석하는 연구에 관한 관심이 커지고 있는 추세이다. 먼저 텍스트 자료에 대한 기본적인 분석 중 하나는 어떤 주제나 내용을 포함하고 있는지 잠재된 토픽을 추출하는 것이다. 연구자가 일일이 모든 자료를 읽고 내용을 요약할 수도 있겠지만, 대용량 데이터를 다루는 경우에는 결코 쉽지 않기 때문에, 통계적 모형을 사용하여 토픽을 추출하는 토픽모형 방법들이 제안되어 왔다 (Blei와 Lafferty, 2007; Blei 등, 2003). 시간에 따라 수집된 텍스트 데이터로부터 토픽의 변화를 모니터링하기 위하여, 본 연구에서는 잠재적 디리슈레 할당(latent Dirichlet allocation) 모형을 통해 토픽을 분류하고 그 결과를 바탕으로 한 토픽 지수를 제안하였다. 또한, 이를 통계적 공정관리의 대표적 도구인 관리도에 적용하여 시간 경과에 따른 토픽의 변화를 모니터링하는 데 적용해 보았다. 실제 데이터로 2018년 3월 5일부터 2020년 3월 5일 사이에 청와대 국민청원 온라인 게시판에 접수된 텍스트 데이터를 사용하였으며, 토픽 지수를 모니터링함으로써 토픽에 대한 이상변화를 탐지할 수 있음을 살펴 보았다.

구성주의 이론에 기반한 자기주도적 웹 기반 교육의 설계와 구현 (Design and Implementation of Web Based Instruction Based on Constructivism for Self-Directed Learning Ablity)

  • 김기남;김의정;김창석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.855-858
    • /
    • 2006
  • 정보화 시대에 이르러 정보통신기술의 급속한 발달은 교육을 포함한 모든 분야에 획기적인 패러다임의 변화를 가져왔다. 교육에 있어서의 변화는 단순한 지식의 축적이 아닌 학습자가 스스로 문제를 발견하고, 이를 위한 적절한 해결방법을 습득함을 의미한다. 즉, 교사는 조언자로서의 역할을, 학생은 학습의 주도자로서의 역할을 담당하며, 이는 교육의 주체가 교사중심에서 학생중심으로의 전환을 뜻한다. 이러한 교육적 패러다임의 변환과 더불어 주목받고 있는 교수학습이론이 "구성주의(Constructivism)"이다. 구성주의의 틀안에서 과거의 교사중심의 직접교수법 대신에 학습자 중심의 참여학습을 강조하고 있으며, 새로운 교육적 패러다임의 실천적 방안을 구체적으로 제시하고 있다. 이러한 실천적 방안을 구축 가능하게 해준 것이 바로 정보통신기술 그중에서도 인터넷(internet)의 발달이다. 인터넷에서 가장 활발하게 사용되고 있는 웹(Web)은 그 특성상 구성주의 학습원리를 실현하는데 적절한 환경을 제공하고 있으며, 교육 시스템의 변화를 가져오고 있다. 인터넷을 활용한 웹상에서의 교수학습은 교실이라는 제한된 공간에서 판서에 의존하는 방식의 수업이 아닌 풍부하고 다양한 형태의 폭넓은 자료의 습득을 가능하게 하며, 학습자에게 생동감 있는 학습 경험을 주어 학습 동기를 유발할 수 있다. 또한 기존의 수업에 비해 비교적 시간과 장소의 제약에서 자유롭게 학습할 수 있으며, 학습내용과 관련된 최신의 정보를 참조할 수 있다. 그리고 이미지, 오디오, 비디오, 텍스트와 같은 풍부한 멀티미디어 인터페이스 (Interface)가 가능하고 게시판, 이메일, 채팅을 통하여 교사와 학습자간에 활발한 상호작용이 이루어질 수 있다는 점에서 교육적 가능성이 대두되고 있다. 학교나 교육담당자들도 이런 교육기자제의 첨단화 더불어 새로운 교수 학습 모형 개발에 힘을 쓰고 있다. 이에 본 논문은 구성주의 학습원리에 토대를 둔, 월 기반 교육시스템의 설계 및 구현을 통하여 학습자 중심의 자기주도적 학습활동이 이루어질 수 있는 교육환경을 구축하는데 그 목적이 있다. 라라서 학습자는 학습자의 필요(need)에 라라 선별적으로 강의를 수강할 수 있고, 키워드 정색을 통해 학습하고자 하는 내용을 구분하여 학습할 수 있도록 구현하였다. 이를 통해 학습자들이 자기 주도적으로 주어진 문제에 대해 스스로 해결하는 방법을 찾아 학습할 수 있도록 함으로씨 학습 능력을 키우도록 하는데 그 주안점이 있다.

  • PDF

블로그 데이터 감성분석을 통한 북한산둘레길 구간별 선호도 평가 (Evaluation of Preference by Bukhansan Dulegil Course Using Sentiment Analysis of Blog Data)

  • 이성희;손용훈
    • 한국조경학회지
    • /
    • 제49권3호
    • /
    • pp.1-10
    • /
    • 2021
  • 본 연구는 탐방객이 자유롭게 서술한 블로그 텍스트 데이터를 자연어 처리 기술 중 하나인 감성분석을 활용하여 북한산둘레길의 선호도를 평가하고, 선호 요인과 비선호 요인을 도출하는 것을 목적으로 하였다. 이에 2019년 1년 동안 작성된 블로그를 수집하고 21개 둘레길 구간별 텍스트에 나타난 긍정 및 부정 감성 단어 도출을 통해 감성점수를 산출하였다. 이후 내용분석을 통해 탐방객이 어떤 요소로 인해 구간을 선호하거나 선호하지 않는지 파악하였다. 북한산둘레길에 대해 작성된 블로그에서는 긍정적인 단어가 평균적으로 약 73% 출현하고 있었고, 각 구간별 게시물의 감성 극성 비율에서도 긍정적인 문서의 비율이 부정적인 문서의 비율보다 높았다. 이를 통해 탐방객은 북한산둘레길에 대하여 대체로 긍정적으로 인식하고 있는 것으로 나타났다. 그럼에도 감성점수를 도출한 결과, 21개 둘레길 구간에서는 선호하는 구간과 선호하지 않는 구간이 존재하고 있었다. 선호 구간과 비선호 구간에 대해 탐방객은 난이도가 낮고 부담 없이 걸을 수 있는 구간을 선호하고 있었고, 경관에 대한 여러 요소(시각, 청각, 후각 등)가 조화롭고 계절감이 뚜렷해 다양한 경관이 연출되는 곳, 경관 시퀀스의 변화가 존재하는 구간을 선호하는 것으로 나타났다. 또한 탐방객은 전망대, 조망점 등의 뷰포인트 유무를 둘레길에서의 주요 요소로 인식하고 있었고, 접근성이 우수하고 안내판 등 정보 제공이 원활하게 이뤄지는 구간에 대해 선호도가 더 높은 것을 알 수 있다. 반면, 도로와 인접함에 따라 발생되는 주변 소음과 과도한 시가지 비율, 구간별 난이도 불균형 등으로 인한 둘레길 동선 불만족이 비선호 요인으로 크게 작용하고 있었으며, 경관 단절 및 구간에 대한 정보 부족 등이 선호도를 떨어트리는 원인으로 나타났다. 본 연구의 결과는 국립공원뿐만 아니라 근교 산림 녹지 관리에 있어서 둘레길 정비 및 개선방안 마련에 활용될 수 있으며, 연구에 활용된 감성분석은 자연지역에 대한 실제 이용자들의 반응을 지속적으로 모니터링 할 수 있다는 점에 의의가 있다. 다만 사전에 정의된 감성사전을 기반으로 평가하였기에 지속적인 사전 업데이트가 필요하다. 또한 소셜미디어 특성상 부정적인 견해보다는 긍정적인 내용을 공유하는 경향이 존재하기 때문에, 현장 설문조사 등의 분석 결과와 비교, 검토하는 작업이 필요하다.

오피니언 마이닝을 이용한 지능형 VOC 분석시스템 (Intelligent VOC Analyzing System Using Opinion Mining)

  • 김유신;정승렬
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.113-125
    • /
    • 2013
  • 기업 경영에 있어서 고객의 소리(VOC)는 고객 만족도 향상 및 기업의사결정에 매우 중요한 정보이다. 이는 비단 기업뿐만 아니라 대고객, 대민원 업무를 처리하는 모든 조직에 있어서도 동일하다. 때문에 최근에는 기업뿐만 아니라 공공, 의료, 금융, 교육기관 등 거의 모든 조직이 VOC를 수집하여 활용하고 있다. 이러한 VOC는 방문, 전화, 우편, 인터넷게시판, SNS 등 다양한 채널을 통해 전달되지만, 막상 이를 제대로 활용하기는 쉽지 않다. 왜냐하면, 고객이 매우 감정적인 상태에서 고객의 주관적 의사를 음성 또는 문자로 표출하기 때문에 그 형식이나 내용이 정형화되어 있지 않고 저장하기도 어려우며 또한 저장하더라도 매우 방대한 분량의 비정형 데이터로 남기 때문이다. 본 연구는 이러한 비정형 VOC 데이터를 자동으로 분류하고 VOC의 유형과 극성을 판별할 수 있는 오피니언 마이닝 기반의 지능형 VOC 분석 시스템을 제안하였다. 또한 VOC 오피니언 분석의 기준이 되는 주제지향 감성사전 개발 프로세스와 각 단계를 구체적으로 제시하였다. 그리고 본 연구에서 제시한 시스템의 효용성을 검증하기 위하여 의료기관 홈페이지에서 수집한 4,300여건의 VOC 데이터를 이용하여 병원에 특화된 감성어휘와 감성극성값을 도출하여 감성사전을 구축하고 이를 통해 구현된 VOC분류 모형의 정확도를 비교하는 실험을 수행하였다. 그 결과 "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" 등의 어휘는 매우 높은 긍정 오피니언 값을 가지며, "퉁명, 뭡니까, 말하더군요, 무시하는" 등의 어휘들은 강한 부정의 극성값을 가지고 있음을 확인하였다. 또한 VOC의 오피니언 분류 임계값이 -0.50일 때 가장 높은 분류 예측정확도 77.8%를 검증함으로써 오피니언 마이닝 기반의 지능형 VOC 분석시스템의 유효성을 확인하였다. 그러므로 지능형 VOC 분석시스템을 통해 VOC의 실시간 자동 분류 및 대응 우선순위를 도출하여 고객 민원에 대해 신속히 대응한다면, VOC 전담 인력을 효율적으로 운용하면서도 고객 불만을 초기에 해소할 수 있는 긍정적 효과를 기대해 볼 수 있을 것이다. 또한 VOC 텍스트를 분석하고 활용할 수 있는 오피니언 마이닝 모형이라는 새로운 시도를 통해 향후 다양한 분석과 실용 프레임워크의 기틀을 제공할 수 있을 것으로 기대된다.