• Title/Summary/Keyword: 겉보기비저항

Search Result 71, Processing Time 0.027 seconds

Forward Calculation of Electric Potential, Electric Field and Resistivity Survey on Anisotropic Layered Half Space (이방성 층상구조에 대한 전위와 전기장 및 전기비저항탐사 계산 연구)

  • Na, Sung-Ho;Kim, Hyoung-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.98-112
    • /
    • 2021
  • We followed and extended the algorithm originally made by Das (1995) to calculate the electric potential and field induced by electric current in arbitrary anisotropic layered structure. We confirmed all the theoretical contents and coded the corresponding program to acquire the electric potential and field. Further we extended to forward estimation of apparent resistivity to be attained by electrical resistivity survey on anisotropic layered structure with differing the electrode spacing and azimuth of anisotropy. The effects of anisotropy were reviewed by considering some examples.

Capacitively-coupled Resistivity Method - Applicability and Limitation (비접지식 전기비저항 탐사 - 적용성과 한계)

  • Lee Seong Kon;Cho Seong-Jun;Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.23-32
    • /
    • 2002
  • Capacitively-coupled resistivity (CCR) system is known to be very useful where galvanic contact to earth is impossible, such as the area covered with thick ice, snow, concrete or asphalt. This system injects current non-galvanically, i.e., capacitively to earth through line antenna and measures potential difference in a same manner. We derived geometric factor for two types of antenna configuration and presented the method of processing and converting the data obtained with CCR system suitable to conventional resistivity inversion analysis. The CCR system, however, has limitations on use at conductive area or electrically noisy area since it is very difficult to inject sufficient current to earth with this system as with conventional resistivity system. This causes low SM ratio when acquiring data with CCR system and great care must be taken in acquiring data with this system. Additionally the uniform contact between line antennas and earth is also crucial factor to obtain good S/N ratio data. The CCR method, however, enables one to perform continuous profiling over a survey line by dragging entire system and thus will be useful in rapid investigation of conductivity distribution in shallow subsurface.

An Interpretive Analysis of Magnetotelluric Response for a Three-dimensional Body Using FDM (FDM을 이용한 MT 탐사의 3차원 모형 반응 연구)

  • Han Nuree;Lee Seong Kon;Song Yoonho;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.136-147
    • /
    • 2004
  • In this study, the characteristics of magnetotelluric (MT) responses due to a three-dimensional (3-D) body are analyzed with 3-D numerical modeling. The first model for the analysis consists of a single isolated conductive body embedded in a resistive homogeneous half-space. The second model has an additional conductive overburden while the other conditions remain the same as the first one. The analysis of apparent resistivities shows well that the 3-D effects are dominant over some frequency range for the first model. Two mechanisms, current channeling and induction, for secondary electric fields due to the conductive body are analyzed at various frequencies: at high frequencies induction is more dominant than channeling, while at low frequencies channeling is more dominant than induction. Tippers have a strong relation to the position of anomalous body and the real and imaginary parts of induction vector also indicate the position of anomalous body. off-line conductive anomaly sometimes causes severe problem in 2-D interpretation. In such case, induction vector analysis can give information on the existence and location of the anomalous body. Each parameter of the second model shows similar responses as those of the first model. The only difference is that the magnitude of all parameters is decreased and that the domain showing the 3-D effects becomes narrower. As shown in this study, the analysis of 3-D effects provides a useful and effective means to understand the 3-D subsurface structure and to interpret MT survey data.

Integrated Interpretation of ERT Data from the Mineralized Zone in Geumpung Mine (금풍광산 광화대에 대한 전기비저항 토모그래피탐사 자료의 복합해석)

  • Jung, Yeon-Ho;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.322-331
    • /
    • 2007
  • In this study, electrical resistivity tomography (ERT) were conducted to find the mineralized zone at the Geumpung mine in Dojeon-ri, Susan-myeon, Jecheon-si, Chungcheongbuk-do. The deviation of the inclined borehole was measured to obtain the exact positions of the electrodes for correcting apparent resistivity values from ERT. Geophysical loggings such as resistivity and natural gamma were conducted to obtain the properties of the material near the borehole. Measurements of the physical properties of the cores, such as porosity, water content, density, susceptibility, resistivity were performed to analyze the correlation between physical properties and resistivity. Grade analysis for core sample was also conducted to identify relationship between grade and resistivity. Rock property analysis shows that the resistivity is more dominated by susceptibility and grade than by porosity and water content in the mineralized zone. The results of ERT are well consistent with geophysical logging data and geologic column. So ERT is powerful method to identify conductive mineralized zone.

Verification of Reinforcement with Grouting Materials in a Small Scale Reservoir Dike using Surface and Borehole Electrical Resistivity survey (지표 및 시추공 전기비저항 탐사를 중심으로)

  • Song, Sung-Ho;Yong, Hwan-Ho;Kim, Yang-Bin
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.239-245
    • /
    • 2009
  • To verify the reinforcing effect of grouting materials composed of colloid cement and ordinary portland cement on the water leakage region in a small scale dike, we performed a tubecasing method and applied surface electrical resistivity survey including electrical resistivity tomography (ERT) to find resistivity variation before and after grouting. Hydraulic conductivities after grouting show 10 times lower than those of before grouting. These variation indicates that the cement grout blocks the leakage pathway effectively. As the results of dipole-dipole resistivity survey along the dike, resistivity distribution after grouting did not represent noticeable spatial variation in time. Resistivity monitoring results at the dike with vertical electrical sounding (VES) showed that the region of decreasing apparent resistivity was occupied by the grout after grouting. Predicted resistivities from the inversion of ERT data well matched with results of VES at the same regions. From the ERT using check holes to inspect the effect of grouting, we could find that the ERT is quite effective to identify spatially the grout region in a dike.

Effects of 3D Topography on Magnetotelluric Responses (MT 탐사의 3차원 지형효과)

  • Nam, Myung-Jin;Kim, Hee-Joon;Song, Yoon-Ho;Lee, Tae-Jong;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.275-284
    • /
    • 2007
  • For precise interpretation of magnetotelluric (MT) data distorted by irregular surface terrain, topography effects are investigated by computing apparent resistivities, phases, tippers and induction vectors for a three-dimensional (3D) hill-and-valley model. To compute MT responses for the 3D surface topography model, we use a 3D MT modeling algorithm based on an edge finite-element method which is free from vector parasites. Distortions on the apparent resistivity and phase are mainly caused by distorted currents that flow along surface topography. The distribution of tipper amplitudes over both hill and valley are the same, while the tipper points toward the center of hill and the base of the valley. The real part of induction vector also points in the same direction as that of tipper, while the imaginary part in the opposite direction.

Fabrication of $\textrm{MoSi}_2$ Heating Elements (이규화몰리브덴 고온발열체의 제조에 관한 연구)

  • Kim, Won-Baek;Sim, Geon-Ju;Jang, Dae-Gyu;Seo, Chang-Yeol
    • Korean Journal of Materials Research
    • /
    • v.7 no.9
    • /
    • pp.763-771
    • /
    • 1997
  • 이규화몰리브덴 고온발열체의 제조공정을 개발하였다. 원료분말은 상용 MoSi$_{2}$분말이었으며 Bentonite, Si$_{3}$N$_{4}$, B, ThO$_{2}$를 각각 가소제와 첨가제로 사용하였다. 이들은 진공압출, 소결, 단자부 기계가공, U자형 성형, 용접 등의 과정을 거쳐 U자형 발열체로 제조되었다. 사용제품의 분석결과 최근 사용온도가 크게 증가된 것으로 알려진 190$0^{\circ}C$용 발열체는 다량(33wt%)의 W이 Mo을 치환하고 있는 것으로 나타났다. 발열체의 전기비저항은 겉보기 밀도가 증가함에 따라 급격하게 감소하는 경향을 보였으며 첨가물들의 영향은 미미하였다. 1400-1$600^{\circ}C$에서 용접한 경우 용접면에서의 전기비저항은 비용접부보다 낮았으며 용접온도가 증사함에 따라 감소하였다. 발열시험결과 제조된 발열체는 표면온도가 1$700^{\circ}C$이하에서는 문제가 없었으며 175$0^{\circ}C$ 이상의 온도에서는 원형의 융기가 표면에 발생하면서 급속하게 파괴되었다. 이 융기는 X-선 회절분석결과 SiO로 밝혀졌으며 따라서 발열체의 파괴는 MoSi$_{2}$/SiO$_{2}$계면에서의 Si(in MoSi$_{2}$) + SiO$_{2}$=2SiO(g)반응에 으해 일어나는 것으로 판단된다.

  • PDF

Self-Sensing and Interfacial Property of Carbon Nanofiber/Epoxy Composites with Different Aspect Ratios (형상비가 다른 탄소나노섬유/에폭시 복합재료의 자체 감지능 및 계면특성)

  • Jang, Jung-Hoon;Kim, Pyung-Gee;Kim, Sung-Ju;Wang, Zuo-Jia;Park, Joung-Man;Yoon, Dong-Jin
    • Journal of Adhesion and Interface
    • /
    • v.9 no.1
    • /
    • pp.3-8
    • /
    • 2008
  • Self-sensing was evaluated for carbon nanofiber (CNF)/epoxy composites with two different aspect ratios via electro-micromechanical technique and wettability test. Volumetric electrical resistance was measured to evaluate the comparative dispersion degree indirectly and it decreased due to the increase of electric contacts with increasing CNF concentration. The dispersion degree was evaluated indirectly by calculating coefficient of variation (COV) of volumetric electrical resistance. The CNF type A with a high aspect ratio showed better self-sensing than the case of CNF type B with a short aspect ratio. The CNF type B/epoxy composite showed little self-sensing at a concentration higher than 2 vol% probably due to poor dispersion. The apparent modulus of CNF type B was higher than that of CNF type A due to the orientation effect and the high surface area. The thermodynamic work of adhesion was consistent with the result of apparent modulus.

  • PDF

The Interactive Effect of Translational Drift and Torsional Deformation on Shear Force and Torsional Moment (전단력 및 비틀림 모멘트에 의한 병진 변형 및 비틀림 변형의 상호 작용 효과)

  • Kim, In-Ho;Abegaz, Ruth A.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.277-286
    • /
    • 2022
  • The elastic and inelastic responses obtained from the experimental and analytical results of two RC building structures under the service level earthquake (SLE) and maximum considered earthquake (MCE) in Korea were used to weinvestigate the characteristics of the mechanisms resisting shear and torsional behavior in torsionally unbalanced structures. Equations representing the interactive effect of translational drift and torsional deformation on the shear force and torsional moment were proposed. Because there is no correlation in the behavior between elastic and inelastic forces and strains, the incremental shear forces and incremental torsional moments were analyzed in terms of their corresponding incremental drifts and incremental torsional deformations with respect to the yield, unloading, and reloading phases around the maximum edge-frame drift. In the elastic combination of the two dominant modes, the translational drift mainly contributes to the shear force, whereas the torsional deformation contributes significantly to the overall torsional moment. However, this phenomenon is mostly altered in the inelastic response such that the incremental translational drift contributes to both the incremental shear forces and incremental torsional moments. In addition, the given equation is used to account for all phenomena, such as the reduction in torsional eccentricity, degradation of torsional stiffness, and apparent energy generation in an inelastic response.