• 제목/요약/키워드: 검색 모델

검색결과 1,671건 처리시간 0.031초

KFREB: 생성형 한국어 대규모 언어 모델의 검색 기반 생성 평가 데이터셋 (KFREB: Korean Fictional Retrieval-based Evaluation Benchmark for Generative Large Language Models)

  • 이정섭;손준영;이태민;박찬준;강명훈;박정배;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.9-13
    • /
    • 2023
  • 본 논문에서는 대규모 언어모델의 검색 기반 답변 생성능력을 평가하는 새로운 한국어 벤치마크, KFREB(Korean Fictional Retrieval Evaluation Benchmark)를 제안한다. KFREB는 모델이 사전학습 되지 않은 허구의 정보를 바탕으로 검색 기반 답변 생성 능력을 평가함으로써, 기존의 대규모 언어모델이 사전학습에서 보았던 사실을 반영하여 생성하는 답변이 실제 검색 기반 답변 시스템에서의 능력을 제대로 평가할 수 없다는 문제를 해결하고자 한다. 제안된 KFREB는 검색기반 대규모 언어모델의 실제 서비스 케이스를 고려하여 장문 문서, 두 개의 정답을 포함한 골드 문서, 한 개의 골드 문서와 유사 방해 문서 키워드 유무, 그리고 문서 간 상호 참조를 요구하는 상호참조 멀티홉 리즈닝 경우 등에 대한 평가 케이스를 제공하며, 이를 통해 대규모 언어모델의 적절한 선택과 실제 서비스 활용에 대한 인사이트를 제공할 수 있을 것이다.

  • PDF

텐서공간모델 기반 시멘틱 검색 기법 (A Tensor Space Model based Semantic Search Technique)

  • 홍기주;김한준;장재영;전종훈
    • 한국전자거래학회지
    • /
    • 제21권4호
    • /
    • pp.1-14
    • /
    • 2016
  • 시멘틱 검색은 검색 사용자의 인지적 노력을 최소화하면서 사용자 질의의 문맥을 이해하여 의미에 맞는 문서를 정확히 찾아주는 기술이다. 아직 시멘틱 검색 기술은 온톨로지 또는 시멘틱 메타데이터 구축의 난제를 갖고 있으며 상용화 사례도 매우 미흡한 실정이다. 본 논문은 기존 시멘틱 검색 엔진의 한계를 극복하기 위하여 이전 연구에서 고안한 위키피디아 기반의 시멘틱 텐서공간모델을 활용하여 새로운 시멘틱 검색 기법을 제안한다. 제안하는 시멘틱 기법은 문서 집합에 출현하는 '단어'가 텐서공간모델에서 '문서-개념'의 2차 텐서(행렬), '개념'은 '문서-단어'의 2차 텐서로 표현된다는 성질을 이용하여 시멘틱 검색을 위해 요구되는 온톨로지 구축의 필요성을 없앤다. 그럼에도 불구하고, OHSUMED, SCOPUS 데이터셋을 이용한 성능평가를 통해 제안 기법이 벡터공간모델에서의 기존 검색 기법보다 우수함을 보인다.

XML 문서의 구조기반 검색성능 평가 (Performance Evaluation on Structure-based Retrievals of XML Documents)

  • 김수희
    • 한국산학기술학회논문지
    • /
    • 제10권2호
    • /
    • pp.396-406
    • /
    • 2009
  • 이 논문에서는 XML 문서의 효율적인 구조검색을 위하여 기존의 연구에 이어 엘리먼트들의 순서를 명시하는 메타데이터들을 추가로 개발하였고, 이들을 바탕으로 구조기반 인덱싱 모델을 설계하였다. 설계한 구조검색 인덱스들은 문서의 계층구조에서 수직관계에 있는 엘리먼트들 뿐만 아니라 수평관계에 있는 엘리먼트들을 효율적으로 검색할 수 있게 한다. 제안한 구조기반 인덱스의 성능을 평가하기 위해 프로토타입 XML 문서 검색 시스템 개발하였고, XML 코퍼스를 대상으로 검색 실험을 수행하였다. 자손검색, 조상검색, 형제검색에서 ETID 모델보다 평균 검색 시간이 약 12% 정도 향상되었으며, 특정 엘리먼트 타입의 순서를 명시한 검색에서는 평균 검색 시간이 ETID 모델보다 25% 이상의 향상률을 보였다. 이것은 이 논문에서 제시한 Etype, Asso, LSSO를 이용한 검색이 엘리먼트의 순서를 명시한 검색 성능 향상에 큰 기여를 한 것으로 분석된다.

지능형 화상 검색 시스템에서의 사용자 모델을 이용한 사용자 적응 (User Adaptation Using User Model in Intelligent Image Retrieval System)

  • 김용환;이필규
    • 한국정보처리학회논문지
    • /
    • 제6권12호
    • /
    • pp.3559-3568
    • /
    • 1999
  • 수많은 정보의 홍수 속에 정보 과다는 현대인의 피할 수 없는 문제로 대두되었다. 특히, 인터넷과 컴퓨팅 기술의 발전으로 정보 자원이 급속도로 증가하고 있다. 따라서, 사용자가 원하는 정보를 찾아내는 것은 더욱 어려워졌다. 이러한 정보 검색 문제들을 해결하기 위하여 많은 정보 검색 시스템이 나타나게 되었다. 현재의 정보 검색 시스템들은 문서 검색에서는 사용자의 요구에 맞는 결과를 찾아 주고 있다. 그러나. 화상에 대한 검색 시스템의 연구는 초보 단계이기 때문에 사용자의 요구에 맞는 결과를 출력하지 못하고 있다. 이러한 문제를 해결하기 위해서 본 논문에서는 화상 검색 시스템이 사용자 모델을 이용하여 사용자에게 적응할 수 있는 기능을 부여하기 위하여 지능 사용자 인터페이스에 관한 고찰을 통한 인간-컴퓨터의 상호 작용 모델인 HCOS(Human-Computer Symmetry) 모델을 적용하고 이를 기반으로 화상 검색 시스템에서의 사용자 적응 능력을 갖는 지능 사용자 인터페이스를 제안하였다. 지능 사용자 인터페이스는 정보 검색의 복잡성과 사용자와 시스템간의 의미상의 차이를 감소시켜야 하며 사용자의 질의 성향과 관심을 반영할 수 있도록 학습 기능과 적응 기능을 포함하고 있어야 한다. 이를 위해 본 논문에서는 화상 검색을 위한 사용자 모델에 기계 학습(Machine Learning) 알고리듬인 결정 트리(Decision Tree)와 역전파 신경망(Backpropagation Neural Network)을 사용하였다. 지능 사용자 인터페이스의 화상 검색 실험을 통하여 시스템이 사용자에 적응하여 검색 효율이 좋아짐을 알 수 있었다.

  • PDF

질문-단락 간 N-gram 주의 집중을 이용한 단락 재순위화 모델 (Passage Re-ranking Model using N-gram attention between Question and Passage)

  • 장영진;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.554-558
    • /
    • 2020
  • 최근 사전학습 모델의 발달로 기계독해 시스템 성능이 크게 향상되었다. 하지만 기계독해 시스템은 주어진 단락에서 질문에 대한 정답을 찾기 때문에 단락을 직접 검색해야하는 실제 환경에서의 성능 하락은 불가피하다. 즉, 기계독해 시스템이 오픈 도메인 환경에서 높은 성능을 보이기 위해서는 높은 성능의 검색 모델이 필수적이다. 따라서 본 논문에서는 검색 모델의 성능을 보완해 줄 수 있는 오픈 도메인 기계독해를 위한 단락 재순위화 모델을 제안한다. 제안 모델은 합성곱 신경망을 이용하여 질문과 단락을 구절 단위로 표현했으며, N-gram 구절 사이의 상호 주의 집중을 통해 질문과 단락 사이의 관계를 효과적으로 표현했다. KorQuAD를 기반으로한 실험에서 제안모델은 MRR@10 기준 93.0%, Top@1 Precision 기준 89.4%의 높은 성능을 보였다.

  • PDF

특허정보 검색을 위한 벡터스페이스 검색모텔의 적용 (Vector Space Model for Patent Information Retrieval System)

  • 원상훈;노태길;손기준;박정희;이상조
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.516-518
    • /
    • 2003
  • 본 논문은 특허 문서에 맞게 벡터스페이스 모델을 적용하여 특허정보 검색기를 구현한다. 기존의 상용 특허 검색 시스템의 문제점을 제시하고, 특허 문헌의 특징을 분석하여, 이를 반영한 특허 문헌 검색등의 벡터 스페이스 모델을 제시한다. 하나의 특허 문서는 서로 상이한 특성을 지닌 텍스트와 데이터의 조합으로 이루어져 있다. 따라서 이를 하나의 벡터로 표현하는 것이 용이하지 않다. 이에 대해 본 연구에서는 내용 필드들을 특성에 따라 둘 이상의 벡터로 표현하고, 수치 및 고유명 필드는 불린검색형태로 처리되는 혼합형 벡터 모델을 제안한다. 각 필드의 특징에 맞게 색인어를 추출하며, 텍스트 필드의 색인어률 벡터로 표현하는 과정에서는 잘 알려진 TF-IDF 가중치를 사용하되, 특허 문서가 IPC 특허 분류 기준에 따라 완전 분류되어 있는 문서라는 특징을 이용, 보다 정확한 가중치를 부여한다. 실험과 성능평가를 통하여 제안한 특허 모델의 유용성을 보인다.

  • PDF

롱테일 질의 확장을 위한 추출 및 생성 기반 모델 (Long-tail Query Expansion using Extractive and Generative Methods)

  • 김래선;김성순;장헌석;박석원;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.267-273
    • /
    • 2020
  • 검색 엔진에 입력되는 질의 중 입력 빈도는 낮지만 상대적으로 길이가 긴 질의를 롱테일 질의라고 일컫는다. 롱테일 질의가 전체 검색 로그에서 차지하는 비중은 높은 반면, 그 형태가 매우 다양하고 검색 의도가 상세하며 개별 질의의 양은 충분하지 않은 경우가 많기 때문에 해당 질의에 대한 적절한 검색어를 추천하는 것은 어려운 문제다. 본 논문에서는 롱테일 질의 입력 시 적절한 검색어 추천을 제공하기 위하여 질의-문서 클릭 정보를 활용한 추출기반 모델 및 Seq2seq와 GPT-2 기반 생성모델을 활용한 질의 확장 방법론을 제안한다. 실험 및 결과 분석을 통하여 제안 방법이 기존에 대응하지 못했던 롱테일 질의를 자연스럽게 확장할 수 있음을 보였다. 본 연구 결과를 실제 서비스에 접목함으로써 사용자의 검색 편리성을 증대하는 동시에, 언어 모델링 기반 질의 확장에 대한 가능성을 확인하였다.

  • PDF

다국어 정보 검색을 위한 적대적 언어 적응을 활용한 ColBERT (ColBERT with Adversarial Language Adaptation for Multilingual Information Retrieval)

  • 김종휘;김윤수;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.239-244
    • /
    • 2023
  • 신경망 기반의 다국어 및 교차 언어 정보 검색 모델은 타겟 언어로 된 학습 데이터가 필요하지만, 이는 고자원 언어에 치중되어있다. 본 논문에서는 이를 해결하기 위해 영어 학습 데이터와 한국어-영어 병렬 말뭉치만을 이용한 효과적인 다국어 정보 검색 모델 학습 방법을 제안한다. 언어 예측 태스크와 경사 반전 계층을 활용하여 인코더가 언어에 구애 받지 않는 벡터 표현을 생성하도록 학습 방법을 고안하였고, 이를 한국어가 포함된 다국어 정보 검색 벤치마크에 대해 실험하였다. 본 실험 결과 제안 방법이 다국어 사전학습 모델과 영어 데이터만을 이용한 베이스라인보다 높은 성능을 보임을 실험적으로 확인하였다. 또한 교차 언어 정보 검색 실험을 통해 현재 검색 모델이 언어 편향성을 가지고 있으며, 성능에 직접적인 영향을 미치는 것을 보였다.

  • PDF

OpenAPI 검색 시스템을 위한 통합 서비스 정보 모델의 연구 및 개발 (A Development of OpenAPIs' Integrated Service Information Model for OpenAPI Search System)

  • 차승준;김경옥;이규철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.1170-1173
    • /
    • 2009
  • OpenAPI와 매쉬업(Mashup)은 현재 발전해가고 있는 웹 2.0을 이루는 중요한 기술이다. OpenAPI의 수는 기하급수적으로 증가하고 있기 때문에, OpenAPI에 대한 검색시스템은 반드시 필요하게 되었다. 대표적인 OpenAPI 검색은 Programmableweb과 Popfly에서 제공하고 있으며, 이들의 제한점을 보완한 OpenAPI 검색 시스템이 연구되고 있다. OpenAPI 검색 시스템은 웹서비스 검색 시스템을 확장하여 개발되었지만, 다양한 OpenAPI의 프로토콜을 지원하지 못한다. 따라서 본 논문은 효과적인 OpenAPI 검색 시스템에서 OpenAPI의 다양한 프로토콜을 포함할 수 있는 통합 정보모델을 구축을 목표로 한다. 개발된 OpenAPI 통합모델은 OpenAPI 및 매쉬업 가능 서비스 검색에 활용될 수 있다.

누적 히스토그램을 이용한 3차원 물체의 부재 검색 (3D partial object retrieval using cumulative histogram)

  • 은성종;현대환;이기정;황보택근
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.669-672
    • /
    • 2009
  • 제안된 방법은 3차원 모델로부터 형상 기술자를 추출하고, 형상의 유사성을 비교하기 위해 특징 기술자를 이용한다. 대부분의 검색 방법들은 데이터베이스에서 개별적인 3차원 모델의 비교와 검색에 중점이 되어있지만, 본 유사성 검색 방법은 형상 유사성을 이용하여 3차원 물체의 부재 비교와 검색에 초점이 맞추었다. 물체의 부재 유사성 검색 방법은 3차원 모델들의 유사한 부분을 찾는 것과 유사한 부분을 포함하는 3차원 모델을 찾는 것으로 확장된다. 성능 평가를 위한 실험에서 유사한 3차원 석탑 모델의 부재를 효과적으로 검색하였다.

  • PDF