• Title/Summary/Keyword: 검색키워드

Search Result 1,017, Processing Time 0.293 seconds

Information Retrieval Using Images (영상을 이용한 정보검색)

  • 최윤경;이은애;하석운
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.37-39
    • /
    • 2002
  • 정보 검색 시스템은 인터넷에 존재하는 수많은 정보 중에서 사용자가 필요한 특정 정보만을 포함하는 문서를 검색할 수 있다. 현재 정보 검색 시스템은 텍스트를 입력하는 방식을 이용한다. 검색어를 이용하게 되면 몇 개의 키워드를 통하여 원하는 정보를 신속하게 찾을 수 있지만 언어를 기반으로 하기 때문에 각 나라의 언어와 키워드를 알아야 사용할 수 있다는 단점이 있다. 이런 문제점을 해결하기 위해 본 시스템은 언어와 키워드를 알지 못하더라도 정보 검색이 가능하도록 누구나 쉽게 의미를 알 수 있는 영상을 질의로 하는 시스템을 제안한다. 본 시스템은 데이터베이스 내에 200개의 비교 대상 영상들을 5개의 대분류로 나눈 후 각각 3개의 소분류로 나누어 영상의 특징 및 키워드를 추출하여 영상특징키워드 데이터베이스(IFKDB, Image Feature Keyword DataBase)에 저장하였다. 사용자 인터페이스를 통해 새로운 영상을 만들거나 흑은 기존에 만들어진 영상을 선택하여 질의로 사용하면 질의 영상의 특징 중 에지를 추출하여 IFKDB와 비교하여 유사도가 높은 영상의 키워드 중 적정 개수를 선택하여 정보 검색의 키워드로 사용할 수 있게 하였다. 사용자가 그린 단순한 영상으로 검색이 가능하고 사용자가 원하는 영상과 비슷한 영상을 찾을 수 있으며 영상으로 정보 검색이 가능하므로 검색의 편의성을 제공한다.

  • PDF

A Study of High Speed Retrieval Algorithm of Long Component Keyword (복합키워드의 고속검색 알고리즘에 관한 연구)

  • Lee Jin-Kwan;Jung Kyu-cheol;Lee Tae-hun;Park Ki-hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1769-1776
    • /
    • 2004
  • Effective keyword extraction is important in the information search system and there are several ways to select proper keyword in many keywords. Among them, DER Structure for AC Algorithm to search single keyword, can search multiple keywords but it has time complexity problem. In this paper, we developed a algorithm, "EDER structure" by expanding standalone search table based on DER structure search method to improve time complexity. We tested the algorithm using 500 text files and found that EDER structure is more efficient than DER structure for AC for keyword posting result and time complexity that 0.2 second for EDER and 0.6 second for DER structure,structure,

Content-Based Image Retrieval System using Keyword Mapping and Color Features (키워드 매핑과 칼라 특징을 이용한 내용기반 화상 검색 시스템의 구현)

  • Choi, Ki-Ho;Choi, Hyun-Sub
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2498-2511
    • /
    • 1998
  • 본 논문에서는 질의화상을 위한 칼라의 위치묘사 키워드와 칼라 키워드를 칼라특징으로 매핑하여 검색할 수 있는 내용기반 화상 검색 방법을 제안하고 이를 구현하였다. 칼라 키워드는 화상의 칼라 특징을 사용하여 칼라 세그먼트 프리미티브로부터 정의되고, 위치 묘사 키워드는 칼라 영역 정보를 사용하여 위치 세그먼트 프리미티브로부터 정의된다. 정의된 각 칼라 키워드 프리미티브는 화상의 칼라특징으로 매핑되어 저장된 참조화상의 6x6 블록의 칼라 특징과 비교하게 되고 유사도 순치 묘사 키워드와 칼라 키워드 검색의 정확도를 측정하였고, 화상검색 실험결과, 평균 recall/precision이 0.72/0.80를 보임으로써 내용기반 화상 데이터 검색에 제안된 방법이 유용함을 보였다.

  • PDF

The Keyword Relationship Analysis Using Searching Engine (검색 엔진을 이용한 키워드 연관성 분석)

  • Lee, Ju-Yeon;No, Jung-Hyun;Jo, So-Hyun;Lee, Jung-Hwa;Park, Yoo-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.1077-1080
    • /
    • 2014
  • 대량으로 발생하는 키워드들 간의 연관성을 분석하고자 하는 연구는 꾸준히 진행되어 왔다. 많은 용어들의 관계를 분석하기 위한 방법으로 전문가 집단의 인력과 시간을 수행할 수 있지만, 시간과 비용이 많이 소모된다. 이를 해결하기 위한 방법으로 이미 관련 키워드 서비스를 제공하기 위한 시스템을 구축해 놓은 검색엔진을 사용해서 키워드들 간의 관계를 분석해 볼 수 있다. 본 논문에서는 IT분야의 논문에서 저자들이 자유롭게 작성하는 관심 분야를 키워드로 선정하고, 이 키워드들 간의 관계를 분석하기 위해 검색 엔진에서 출력하는 검색 결과 수를 사용한다. 검색 엔진에서 제공하는 검색 결과 수가 높을수록 다른 키워드와 연관성이 높은 키워드임을 알 수 있다.

A Related Keyword Group Extraction Method for Keyword Marketing (키워드 마케팅을 위한 연관 키워드 추출 기법)

  • 이성진;이수원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.124-126
    • /
    • 2004
  • 인터넷 광고 시장의 급속한 성장과 함께 보다 효율적인 광고기법을 개발하기 위한 노력들이 이루어지고 있는 가운데 최근 들어 검색엔진의 특성을 이용한 키워드 광고가 주목을 받고 있다. 키워드 광고란 사용자가 입력한 검색어와 유사한 범주에 속하는 사이트의 광고를 검색 결과 페이지 상단에 보여주는 것을 말한다. 그러나, 키워드 광고는 키워드를 판매할 수 있는 위치가 한정적이기 때문에 판매 가능성이 있는 키워드에 대한 관리 및 판매 전략이 요구된다. 본 논문에서는 판매 가능성이 있는 키워드에 대한 관리 전략 수립을 위하여 연관 키워드 그룹을 자동으로 추출하는 기법을 제안한다. 연관 키워드 그룹의 생성은 사용자가 입력한 검색어에 의해 노출되는 사이트들을 묶어 그룹으로 형성하고 사이트 그룹의 중요 키워드를 추출한 다음 키워드간의 연관성을 판단하는 과정으로 이루어진다. 본 논문에서는 연관 키워드 그룹 추출의 각 단계를 구체적으로 설명하고 실험 결과를 분석한다. 마지막으로 연구의 결론과 향후 연구 과제에 대하여 기술한다.

  • PDF

A Keyword Search Model based on the Collected Information of Web Users (웹 사용자 누적 사용정보 기반의 키워드 검색 모델)

  • Yoon, Sung-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.777-782
    • /
    • 2012
  • This paper proposes a technique for improving performance using word senses and user feedback in web information retrieval, compared with the retrieval based on ambiguous user query and index. Disambiguation using query word senses can eliminating the irrelevant pages from the search result. According to semantic categories of nouns which are used as index for retrieval, we build the word sense knowledge-base and categorize the web pages. It can improve the precision of retrieval system with user feedback deciding the query sense and information seeking behavior to pages.

Extracting week key issues and analyzing differences from realtime search keywords of portal sites (포털사이트 실시간 검색키워드의 주간 핵심 이슈 선정 및 차이 분석)

  • Chong, Min-Yeong
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.237-243
    • /
    • 2016
  • Since realtime search keywords of portal sites are arranged in descending order by instant increasing rates of search numbers, they easily show issues increasing in interests for a short time. But they have the limits extracted different results by portal sites and not shown issues by a period. Thus, to find key issues from the whole realtime search keywords for certain period, and to show results of summarizing them and analyzing differences, is significant in providing the basis of understanding issues more practically and in maintaining consistency of them. This paper analyzes differences of week key issues extracted from week analysis of realtime search keywords provided by two typical portal sites. The results of experiments show that the portal group means of realtime search keywords by the independent t-test and the survival functions of realtime search keywords by the survival analysis are statistically significant differences.

A Methodology Using Frequency and Precision of Terms for Improving the Searching Performance in Keyword Search (어휘의 사용 빈도와 프리시젼을 이용한 키워드 검색 성능의 향상 방안)

  • Lee Sanghee;Lee Dongjoo;Yang Jongwon;Lee Taehee;Lee Sang-goo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.208-210
    • /
    • 2005
  • 웹에서의 검색을 수행하기 위해 다양한 연구가 수행되었으나, 일반적으로 키워드 검색 방식이 주를 이루고 있다. 이는 검색 대상에 대한 정보가 충분한 경우에는 원하는 검색 결과를 찾아내기 친우나, 그렇지 않은 경우에는 사용자로 하여금 원하는 검색 결과를 추출하기 위친 여러 번의 검색을 추가로 수행하는 수고로움을 요구하곤 한다. 이러한 문제를 해결하기 위하여 어휘 간의 관계에 기반을 둔 확장 검색 방식을 제안한다. 시소러스를 바탕으로 유의어 그룹을 정의하고, 사용자의 검색 키워드 정보를 이용하여 어휘 간의 관계 및 그룹 간의 관계를 정의한다. 정의된 관계를 바탕으로 키워드를 확장하고, 확장된 키워드의 사용 빈도와 프리시젼을 이용하여 사용할 어휘를 선별하여 검색을 수행한다.

  • PDF

An Efficient Inverted Index Technique based on RDBMS for Keyword Search (키워드 검색에 대한 RDBMS에 기반을 둔 효율적인 역색인 기법)

  • Shin, Yoonmi;Jeon, Minhyuk;Ahn, Jinhyun;Im, Dong-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.357-359
    • /
    • 2019
  • RDBMS 상에서 문서에 포함된 키워드 검색을 위한 질의 시 병합 조인 방식을 통해 키워드 검색을 시도하게 된다. 그러나 대용량의 문서를 저장하고 있는 RDBMS 내에서 병합 조인을 사용 시 검색 키워드에 대해 불필요한 비교 연산으로 인하여 질의 문에 대한 검색시간이 길어질 수 있다. 본 논문은 행 지향 관계형 역 색인을 이용하여 키워드 검색 질의 시 병합 조인의 단점을 보완한 지그재그 병합 조인 알고리즘을 사용한다. 관계형 데이터베이스인 postgreSQL 에서 프로시저로 불필요한 비교 연산을 최소화한 지그재그 병합 조인 알고리즘을 구현하여 키워드 검색에 대한 질의 속도 향상을 확인하였다.

Efficient Automatic Image Annotation with Relevance Feedback (적합성 피드백을 적용한 효율적인 자동 이미지 키워드 연결)

  • Song, Ji-Young;Kim, Woo-Cheol;Kim, Seung-Woo;Park, Sang-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.31-34
    • /
    • 2005
  • 디지털 이미지의 양이 증가함에 따라 원하는 이미지를 정확하고 빠르게 찾을 수 있는 방법의 필요성이 증가하고 있다. 이미지 검색 방법으로는 이미지의 색상이나 명암과 같은 시각적 특성을 검색 조건으로 이용하는 내용 기반 검색과 이미지를 설명하는 키워드를 검색 조건으로 이용하는 키워드 기반 검색이 있다. 하지만 이러한 방법만으로는 사용자가 원하는 이미지를 정확하게 찾기 힘들다는 문제점이 제기되어 왔다. 따라서 최근에는 검색 도중 사용자의 응답을 받아 사용자의 요구를 파악함으로써 향상된 검색 결과를 제공하는 적합성 피드백에 대한 연구가 많이 진행되고 있다. 하지만 적합성 피드백을 이용하는 방법들도 원하는 결과를 얻기 위해서는 여러 번의 피드백을 필요로 하고 질의 수행이 완료된 후에는 얻어진 피드백 정보를 재사용하지 못한다는 단점이 있다. 따라서 본 논문에서는 이미지에 키워드를 연결한 후 사용자의 피드백 정보를 반영하여 키워드의 신뢰도를 조절함으로써 키워드 기반 이미지 검색의 정확도를 높일 수 있는 모델을 제안한다. 제안된 모델에서는 사용자로부터 피드백을 받은 이미지뿐만 아니라 긍정적 피드백을 받은 이미지들이 공통적으로 가지는 시각적 특성과 유사한 시각적 특성을 가지는 다른 이미지들까지도 키워드의 신뢰도를 조정함으로써 좀 더 빠른 시간 내에 검색 결과의 정확도를 높이도록 한다.

  • PDF