• Title/Summary/Keyword: 걸음걸이 에너지 영상

Search Result 2, Processing Time 0.016 seconds

Gait-based Human Identification System using Eigenfeature Regularization and Extraction (고유특징 정규화 및 추출 기법을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템)

  • Lee, Byung-Yun;Hong, Sung-Jun;Lee, Hee-Sung;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2011
  • In this paper, we propose a gait-based human identification system using eigenfeature regularization and extraction (ERE). First, a gait feature for human identification which is called gait energy image (GEI) is generated from walking sequences acquired from a camera sensor. In training phase, regularized transformation matrix is obtained by applying ERE to the gallery GEI dataset, and the gallery GEI dataset is projected onto the eigenspace to obtain galley features. In testing phase, the probe GEI dataset is projected onto the eigenspace created in training phase and determine the identity by using a nearest neighbor classifier. Experiments are carried out on the CASIA gait dataset A to evaluate the performance of the proposed system. Experimental results show that the proposed system is better than previous works in terms of correct classification rate.

Infrared Gait Recognition using Wavelet Transform and Linear Discriminant Analysis (웨이블릿 변환과 선형 판별 분석법을 이용한 적외선 걸음걸이 인식)

  • Kim, SaMun;Lee, DaeJong;Chun, MyungGeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.622-627
    • /
    • 2014
  • This paper proposes a new method which improves recognition rate on the gait recognition system using wavelet transform, linear discriminant analysis and genetic algorithm. We use wavelet transform to obtain the four sub-bands from the gait energy image. In order to extract feature data from sub-bands, we use linear discriminant analysis. Distance values between training data and four sub-band data are calculated and four weights which are calculated by genetic algorithm is assigned at each sub-band distance. Based on a new fusion distance value, we conducted recognition experiments using k-nearest neighbors algorithm. Experimental results show that the proposed weight fusion method has higher recognition rate than conventional method.