• Title/Summary/Keyword: 건축물 구조해석

Search Result 400, Processing Time 0.031 seconds

Identification of Viscous and Friction Damping Using Free Vibration Response to SDOF System (단자유도계의 자유진동응답을 이용한 점성 및 마찰감쇠의 식별)

  • Lee, Sung-Kyung;Lee, Woong-Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.305-310
    • /
    • 2019
  • This paper proposes the method of exactly identifying both viscous and friction damping from free vibration response to SDOF structure. Both displacement and acceleration free vibration responses to SDOF system, in which both viscous and friction damping are considered as its damping mechanism, are discussed to verify the proposed method. The relationship for identifying both viscous and friction damping is derived from two consecutive amplitudes of displacement or acceleration peak response. The proposed method is verified through the numerical simulation for an assumed SDOF system consisting of mass, both viscous and friction damping and spring components.

A Study on Mechanical Characteristics and Behaviors of FRP Composite with Three Different types of Matrices under High Temperature (온도 및 매트릭스 특성 변화에 따른 섬유강화 복합재료의 역학적 특성 및 구조적 거동 변화)

  • Jung, Woo-Young;Jang, Jun-Ho;Back, Min-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.1-9
    • /
    • 2008
  • Fiber Reinforced Polymer (FRP) composites are used extensively in aerospace, marine, automotive, infrastructure, chemical processing and sporting good applications. A concern with using FRP composites in some engineering structures is their high flammability and poor fire resistance In this research, material properties of FRP composites at increasingly high temperatures was measured and verified. The obtained mechanical properties of FRP composites were performed according to ASTM D3039/D3039M and tested to a wide range of heat conditions with temperatures from Room-temp. to 300 for times up to 30 min. It is found that the mechanical properties of FRP composites dropped with increasing heat or temperature. The reduction to the properties was due mainly to thermal degradation and combustion of the polymer matrix.

전자처리 스펠클 간섭법을 이용한 다점 용접 접합부의 면외 변위측정

  • 박영문;차용훈;성백섭;김일수;김하식
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.124-129
    • /
    • 2001
  • 점 용접부는 응력상태가 복잡하고, 피로균열은 판 두께, 너겟 직경, 용접 타점수, 부하 방식 등의 역학적인 인자와 재질, 화학성분, 표면 상태 등의 재료적인 인자, 그리고 용접전류, 가압력, 통전 시간등의 용접적인 인자의 영향을 동시에 받으며 3차원적으로 성장하므로 균열 성장 모드는 항상 혼합보드이고 균열이 박판 내면에서 발생. 성장하므로 검출이 곤란하여 균열 성장의 해석 및 예측이 어렵다/sup 1)/. 따라서 비접촉, 실시간, Whole-field, 레이저 파장 단위까지 측정이 가능하여 기존의 방법들의 문제점을 극복할 수 있고, 반도체와 같은 소형의 제품뿐만 아니라 기존에 측정하지 못했던 초고온, 대형 구조물의 변형도 정확하게 측정을 할 수 있는 ESPI법을 이용하여 일반가전 제품, 자동차 건축용에 많이 사용되고 있는 아연도금강판(SGCC)을 선택하여 단일 용접조건으로 점용접의 피치를 변화시켜 시험편을 제작하고 면외변위를 다각도로 측정하여 그 가능성을 검증하고자 한다.(중략)

  • PDF

Risk-Targeted Seismic Performance of Steel Ordinary Concentrically Braced Frames Considering Seismic Hazard (지진재해도를 고려한 철골 보통중심가새골조의 위험도기반 내진성능)

  • Shin, Dong-Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.371-380
    • /
    • 2017
  • The risk-targeted seismic design concept was first included in ASCE/SEI 7-10 to address problems related to the uniform-hazard based seismic concept that has been constructed without explicitly considering probabilistic uncertainties in the collapse capacities of structures. However, this concept is not yet reflected to the current Korean building code(KBC) because of insufficient strong earthquake data occurred at the Korean peninsula and little information on the collapse capacities of structures. This study evaluates the risk-targeted seismic performance of steel ordinary concentrically braced frames(OCBFs). To do this, the collapse capacities of prototype steel OCBFs are assessed with various analysis parameters including building locations, building heights and soil conditions. The seismic hazard curves are developed using an empirical spectral shape prediction model that is capable of reflecting the characteristics of earthquake records. The collapse probabilities of the prototype steel OCBFs located at the Korean major cities are then evaluated using the risk integral concept. As a result, analysis parameters considerably influence the collapse probabilities of steel OCBFs. The collapse probabilities of taller steel OCBFs exceed the target seismic risk of 1 percent in 50 years, which the introduction of the height limitation of steel OCBFs into the future KBC should be considered.

Basic Study on the Building Principles of Structure in Mireuksaji Stone Pagoda (미륵사지서탑 축조의 구조 원리에 관한 기초 연구 6~7세기 전반 목탑과의 비교분석을 중심으로)

  • Cho, Eun Kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.2
    • /
    • pp.86-109
    • /
    • 2009
  • Mireuksa Temple was founded during the reign of King Mu of Baekje(AD 600-641). The circumstance of the construction of this temple is documented in "Memorabilia of the Three Kingdoms (Samgukyusa)". The pagoda named stone pagoda at Mireuksaji temple stands outside the main sanctuary of the western area. The south and west sides of the stone pagoda have completely collapsed, leaving only the eastern facade of six of its levels intact. Through the recent discovery of sarira reliquary we can see that the erection of this pagoda was in 639. So owing to accumulation of excavation results about Baekje temple site and vigorous academic exchange, it is possible that architecture of western pagoda at Mireuksaji temple can be understood in connection with the architectural development of wooden pagoda from 6th to early 7th century in East Asia. So this study is on the consideration of building of this pagoda putting first structure of upper part and cross-shaped space in 1st floor. It was considered that the material characteristics as stone could be applied to the temple pagoda architecture of large scale. The results are as follows. First, it had been built in recognition that the outer and inner part of pagoda should be separated. As it is the expression of structural system in temple pagoda architecture of large scale at that time. In pagoda there was a self-erected structure and the members of outer part of it were constructed additionally. Second, in Mireuksaji stone pagoda there is central column with stones. With inner part of pagoda it can be regarded as mixed structural system that constitutes central contral column and inner structural part. And it could be a kind of middle step to more developed structure of whole as wooden pagodas in Japan. Third, as the sarira reliquary was in central column on the first floor, the cross-shaped space could be made. The formation of this space was so on the natural meaning of sarira that the concept as memorial service of graves could be apllied to the pagoda. The style of tomb in Baekje was expressed to the space of 1st floor in pagoda where Sarira had been mstalled. That was not only effective presentation of symbolic space but also easier method in the use of same material.

Reducing Thermal Cracking of Mat-foundation Mass Concrete Applying Different Mix Designs for Upper and Lower Placement Lifts (상하부 배합을 달리함에 의한 기초 매트 매스콘크리트의 수화열 균열저감)

  • Han, Cheon-Gu;Kim, Min-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this research, considering the practical conditions at field, thermal cracking reducing method was suggested based on the comparative analysis between predicted value and actual value obtained from the actual structure member with optimum mix design. The optimum mix design was deduced from the various mix designs with various proportions of cementitious binder for upper and lower placement lifts of mat-foundation mass concrete. Therefore, before field applications, the mix designs were obtained from the theoretical analysis obtained by MIDAS GEN for upper lift was OPC to FA of 85 to 15, and for lower lift was OPC to FA to BS of 50 : 20 : 30. Based on this mix design, the actual concrete for field was determined and all concrete properties were reached within the predicted range. Especially, the temperature properties of mass concrete at core was approximately $39^{\circ}C$ of temperature difference for low-heat mix design, while approximately $54^{\circ}C$ was shown for normal mix design currently used. Additionally, in the case of cracking index, the low heat mix design showed about 1.4 of relatively high value while the normal mix design showed 1.0. Therefore, it can be stated that applying low heat mix design and different heating technique between upper and lower placement lifts for mass concrete are efficient to control the thermal cracking.

Damage Evaluation of Adjacent Structures for Detonation of Hydrogen Storage Facilities (수소저장시설의 폭발에 대한 인접 구조물의 손상도 평가)

  • Jinwon Shin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.61-70
    • /
    • 2023
  • This study presents an analytical study of investigating the effect of shock waves generated by the hydrogen detonation and damage to structures for the safety evaluation of hydrogen storage facilities against detonation. Blast scenarios were established considering the volume of the hydrogen storage facility of 10 L to 50,000 L, states of charge (SOC) of 50% and 100%, and initial pressures of 50 MPa and 100 MPa. The equivalent TNT weight for hydrgen detonation was determined considering the mechanical and chemical energies of hydrogen. A hydrogen detonation model for the converted equivalent TNT weight was made using design equations that improved the Kingery-Bulmash design chart of UFC 3-340-02. The hydrogen detonation model was validated for overpressure and impulse in comparison to the past experimental results associated with the detonation of hydrogen tank. A parametric study based on the blast scenarios was performed using the validated hydrogen detonation model, and design charts for overpressure and impulse according to the standoff distance from the center of charge was provided. Further, design charts of the three-stage structural damage and standoff distance of adjacent structures according to the level of overpressure and impact were proposed using the overpressure and impulse charts and pressure-impulse diagrams.

A Study on Seismic Design Method Considering Physical Properties of Piping Material (배관 재료의 물성을 고려한 내진설계 방법에 관한 연구)

  • Bang, Dae-Suk;Lee, Jae-Ou
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.38-47
    • /
    • 2018
  • In this study, we compare the engineering seismic design method considering the physical properties of piping materials and the specification-oriented design method according to the seismic design standards of fire fighting equipment. In the case of the seismic design method considering the physical properties of piping materials, the safety of the piping will be analyzed through the combined value of the torsional stress and the bending stress generated in the piping. However, in the case of the design-centered design method, instead of the safety of the piping material, it calculates the moving force of the pipe and interprets whether or not the shaking prevention strut can bear. Fire extinguishing equipment piping is possible through safety analysis of stress and displacement of piping material because piping safety can not be secured via unstable force generated in a certain section with one connected structure is there. Therefore, it is necessary to apply analytical method considering seismic performance of building structure and material properties of piping for seismic design of safe fire extinguishing system piping.

Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure (건축구조물의 층전단력 분포에 기초한 마찰감쇠기의 최적설계)

  • Lee, Sang-Hyun;Min, Kyung-Won;Park, Ji-Hun;Lee, Roo-Jee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.21-30
    • /
    • 2005
  • In this study, a seismic design methodology for friction dampers based on the story shear force distribution of an elastic building structure is proposed. First, using two normalization methods for the slip-load of a friction damper, numerical analyses of various single-degree-of-freedom systems are peformed. From those analyses, the effect of the slip-load and the brace stiffness was investigated and the optimal silliness ratio of the brace versus original structure was found. Second, from the numerical analysis for five multi-story building structures with different natural frequency and the number of story, reasonable decision method for the total number of installation floor, location of installation and distribution of the slip-loads are drawn. In addition, an empirical equation on the optimal number of installation floor is proposed. Finally, the superiority of the proposed method compared to the existing design method is verified from the numerical analysis using real earthquake data.

Vibration Control Performance Evaluation of Smart TMD for a Tilted Diagrid Tall Building (경사진 다이어그리드 비정형 초고층 건물에 대한 스마트 TMD의 제진성능평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.79-88
    • /
    • 2011
  • Recently, complex-shaped tall buildings represented by 3T(Twisted, Tapered, Tilted) are planed largely. A diagrid structural system is one of the most widely used structural system for complex-shaped tall buildings because of its structural efficiency and formativeness. Plans for tilted tall buildings are largely presented because of beauty of a sculpture and many of buildings use diagrid structural systems. Lateral displacements of tilted tall buildings are induced by not only lateral loads but also self weight. Therefore, reduction of lateral responses of tilted tall buildings is as important as typical tall buildings. In this study, a smart TMD is introduced to reduce seismic responses of tilted diagrid tall buildings and its control performance is evaluated. MR damper is employed for the smart TMD and ground-hook controller is used as a control algorithm for the smart TMD. 100-story tall building is used as an example structure. Control performances of uncontrolled case, controlled case with TMD and controlled case with smart TMD are compared and investigated. Numerical simulation has shown that smart TMD presented good control performance for displacement response but acceleration response was not controlled well.