• Title/Summary/Keyword: 건조수축균열

Search Result 178, Processing Time 0.025 seconds

Durability Characteristics in Concrete with Ternary Blended Concrete and Low Fineness GGBFS (삼성분계 콘크리트와 저분말도 슬래그를 혼입한 콘크리트의 내구 특성)

  • Kim, Tae-Hoon;Jang, Seung-Yup;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.287-294
    • /
    • 2019
  • GGBFS(Ground Granulated Blast Furnace Slag) has been widely used in concrete for its excellent resistance chloride and chemical attack, however cracks due to hydration heat and dry shrinkage are reported. In many International Standards, GGBFS with low fineness of 3,000 grade is classified for wide commercialization and crack control. In this paper, the mechanical and durability performance of concrete were investigated through two mix proportions; One (BS) has 50% of w/b(water to binder) ratio and 60% replacement ratio with low-fineness GGBFS, and the other (TS) has 50% of w/b and 60% replacement ratio with 4000 grade and FA (Fly Ash). The strength difference between TS and BS concrete was not great from 3 day to 91 day of age, and BS showed excellent performance for chloride diffusion and carbonation resistance. Two mixtures also indicate a high durability index (more than 90.0) for freezing-thawing since they contain sufficient air content. Through improvement of strength in low fineness GGBFS concrete at early age, mass concrete with low hydration heat and high durability can be manufactured.

Mechanical Properties of Polypropylene Fiber mixed in Concrete and Granite Soil Concrete (폴리프로필렌섬유를 혼입한 콘크리트와 화강토콘크리트의 역학적 특성)

  • Jun, Hyung-Soon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.120-126
    • /
    • 2018
  • The study conducted an experiment in which residual aggregate and polypropylene fibers are mixed in concrete, and an experiment in which granite and polypropylene fibers are mixed. Two types of experiments, in particular, changed the amount of polypropylene fibers, and examined the mechanical properties of slump, compressive strength, tensile strength and the like. To establish a light and easy-to-use material for landscape construction and packaging material development by comparing two kinds of experimental results, comparing and analyzing residual aggregate as experimental materials and materials using granite soil to prevent partial destruction due to cracks in drying shrinkage. The more the amount of the PP fibers increases in concrete, the more the volume of the PP fibers increases, the less the slump is determined. As a result of the compressive strength, the cast-down earth concrete is measured to be about 59% to 71% of the concrete strength. As the amount of PP fibers mixed in increased, the compression strength showed a relative decrease. As a result of tensile strength, it is found that the granite concrete is about 68-67% of concrete tensile strength. It was found that the compression strength decreased as the amount of PP fibers mixed in concrete or fire-gant concrete was increased. Then, when polypropylene fibers are mixed in the concrete and the concrete, it is found that tensile strength is increased. By analyzing these results, a fixed amount of PP fiber is mixed in the concrete mixed with the granite soil and utilized for various structures in the field of landscape construction or materials related to packaging, the prevention and improvement effect of the structure is determined.

Studies on the Interaction of Biocides and Ethylsilicate Consolidants for Stone Monument (석조문화재 살생물제와 에틸실리게이트 강화제의 상호작용에 관한 연구)

  • Do, Jin-Young;Yun, Yun-Kyung;Lee, Tae-Jong;Kyung, Hye-Sun
    • Journal of Conservation Science
    • /
    • v.21
    • /
    • pp.73-88
    • /
    • 2007
  • In this paper, the interaction between five biocides(commercial) and two ethylsilicate consolidants for stone monuments, reacted in different sequence, has been studied. Through the structures, weight and gelation time of mixture of biocides and consolidants have been evaluated the reactivity of biocide alone, the reactivity of consolidants and biocides, the reactivity of consolidants and dried biocide, and the reactivity of ethylsilicate gel and biocides. The tested biocides show quite different properties from those of consolidants; after evaporation, some biocides are remained white salt crystals, another need the long time for evaporation and one biocide shows pale brown color. The results have shown an interaction of the tested products each other in some application sequences of the products. When the application of liquid state biocides with consolidants, it was noted that some biocide seem to interfere with the formation of gel due to reaction of consolidants and water and salts in biocides. In the reaction of ethylsilicate with dried biocides have shown a heterogenous gel(transparent layer with ethylsilicate alone and white layer which is mixed biocide and ethylsilicate) and many cracks in product due to the different shrinkage, thus the products don't play a role as consolidants. There is no change in structures and color in reaction of the gas state biocide and ethylsilicate gel.

  • PDF

Experimental Investigation on Variation of Internal Relative Humidity and Temperature due to Hydration of Concrete at Early Age (내부 온습도 측정을 통한 초기재령의 콘크리트 내부 습도 및 수화열 변화 특성 분석)

  • Hong, Sung-Ki;Park, Cheol-Woo;Park, Sung-Jae;Kang, Tae-Sung;Kim, Hee-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.741-744
    • /
    • 2008
  • Quality control of early age concrete significantly influences the long term performance. Primary factors for early age concrete quality control should include the relative humidity and temperature variation, and these are more important as structures become massive and huge. Temperature raise due to cement hydration causes stress, which can develop to cracking with internal and/or external restraints. Exposure conditions including ambient temperature, humidity and wind also significantly affect the cracking behavior of early age concrete. Among many of studies on the early age concrete behavior, investigation on the variation of temperature and relative humidity internal of concrete is not common. That is in part because the difficulties in measuring the relative humidity and temperature inside the concrete. This study used a digital sensor with an appropriate logger to measure internal temperature and relative humidity. This direct measuring method is expected to provide more reliable and comprehensive data acquisition on the early age behavior of concrete.

  • PDF

Study on the fabrication of Ceramic Core using a Gel-casting Process in Aqueous Medium(II) : Physical Properties of Sintered Ceramic Core Body (수용액 매체에서 젤-케스팅 공정을 이용한 세라믹 코어 제조에 관한 연구(II) : 세라믹 코어 소결체의 물성)

  • Kim, Jae-Won;Kim, Du-Hyeon;Kim, In-Su;Yu, Yeong-Su;Choe, Baek-Gyu;Kim, Ui-Hwan;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.465-471
    • /
    • 2001
  • The effect of sintering condition on the mechanical properties and leachability of polydispersed ceramic core body made by gel-casting process in aqueous medium have been investigated. The polydispersed ceramic slip that has low viscosity($\leq$1000cP, at 1000cP (at $50sec^{-1}$ ) and high solid loading(50vo1%) was obtained. The green bodies were fabricated through casting and gelation at room temperature followed by drying at $25^{\circ}C$for 48hrs under relative humidity of 80%. Crack-free green body was successfully fabricated through the above process. The strength at room temperature, apparent bulk density, and shrinkage of the ceramic core body increased propotionally with increasing sintering temperature(1100~150$0^{\circ}C$). However, porosity of the ceramic core body showed relatively low vague. Leaching rate of sintered core body increased with increasing porosity of the sintered body, and was significantly dependent upon the concentration of alkali caustic solution at the same leaching temperature.

  • PDF

Stress Distribution on Construction Joint of Prestressed Concrete bridge Members with Tendon Couplers (텐던커플러를 사용한 프리스트레스트 콘크리트 교량부재의 이음부 응력분포 특성)

  • 오병환;채성태;김병석;이만섭
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Recently, prestressed concrete(PSC) bridge structures with many repetitive spans have been widely constructed using the segmental construction method in many countries. In these segmentally constructed PSC bridges, there exist many construction joints which is required coupling of tendons or overlapping of tendons to introduce continuous prestress through several spans of bridges. The purpose of this paper is to investigate in detail the complicated stress distributions around the tendon coupled joints in prestressed concrete girders. To this end, a comprehensive experimental program has been set up and a series of specimens have been tested to identify the effects of tendon coupling. The present study indicates that the longitudinal and transverse stress distributions of PSC girders with tendon couplers are quite different from those of PSC girders without tendon couplers. It is seen that the longitudinal compressive stresses introduced by prestressing are greatly reduced around coupled joints according to tendon coupling ratios. The large reduction of compressive stresses around the coupled joints may cause deleterious cracking problems in PSC girder bridges due to tensile stresses arising from live loads, shrinkage and temperature effects. The analysis results by finite element method correlate very well with test results observed complex strain distributions of tendon coupled members. It is expected that the results of this paper will provide a good basis for realistic design guideline around tendon coupled joints in PSC girder bridges.

Properties of Non-Sintered Hwangtoh Mortar Using Eco-Friendly Inorganic Binding Material (친환경 무기결합재를 이용한 비소성 황토모르타르의 특성)

  • Heo, Jun-Oh;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.499-506
    • /
    • 2014
  • A number of studies on eco-friendly and healthy building materials are being conducted as modern people are becoming more conscious about health and the environment they live in. Among those materials, studies on Hwangtoh are the most prevalent but due to its strength, crack coming from drying shrinkage, and susceptibility to water, the usage of Hwangtoh is incomplete and limited to be used as a common building material. Cement concrete, considered as one of the most widely used building materials, is extensively used in construction because it is economical, easily accessible and moldable and has proper compressive strength. Due to carbon dioxide created in the process of making cement concrete, it is recognized as pollution. Accordingly, there are a lot of studies on reduction of carbon dioxide in cement concrete industry. There are increasing numbers of researches as well as developments on Hwangtoh or traditional construction materials used in South Korea to reduce the environmental problems. Therefore, this study suggests the basic features of the construction material that can replace cement concrete in the future with the non-sindtered cement mixed with non-sintering hwangtoh which is made with the furnace slag and multiple stimulants.

A Study on the Non-combustible Properties of High-density Fiber Cement Composites Mixed with Hemp Fibers (마 섬유 혼입에 따른 고밀도 섬유 시멘트 복합체의 불연 특성 연구)

  • Jang, Kyong-Pil;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.314-320
    • /
    • 2022
  • The function of reinforcing fibers used in building materials is to maintain resistance to bending loads and to function for cracking caused by drying shrinkage. High-density fiber-cement composites are mainly used for linear plates and are used to increase bending resistance. Therefore, tensile properties, bonding strength with cement hydrate, alkali resistance, and the like are required. Recently, as the non-combustible performance has been strengthened, a function to minimize the occurrence of sparks during high-temperature heating has been added. Therefore, the use of organic fibers is limited. In this study, a study was conducted to replace polypropylene used as reinforcing fiber with hemp fiber with excellent heat resistance. Hemp fibers have excellent heat resistance, good affinity with cement, and excellent alkali resistance. Based on the total volume of polypropylene fibers used in the existing formulation, the non-combustible performance was compared and evaluated by using hemp fibers instead of the polypropylene fibers, and basic physical properties such as flexural strength were tested. As a result of conducting a non-combustibility and physical property test using hemp fibers with a fiber length of 7 mm using 2 % and 3 % by weight, it was found that there is no remaining time of the flame, and the flexural strength can be secured at 95 % level of the existing polypropylene fiber.