• Title/Summary/Keyword: 건전도

Search Result 3,270, Processing Time 0.031 seconds

고장예지 및 건전성관리 기술의 소개

  • Choe, Ju-Ho
    • Journal of the KSME
    • /
    • v.53 no.7
    • /
    • pp.26-34
    • /
    • 2013
  • 이 글에서는 최근 관심을 모으고 있는 고장예지 및 건전성관리(PHM: Prognostics and Health Management) 기술을 소개하고, 항공우주분야의 적용사례를 중심으로 PHM 기술을 어떻게 활용하고 있는지를 설명하고자 한다.

  • PDF

방제포커스 - 농작물 바이러스병의 피해 및 방제 대책

  • Kim, Jeong-Su
    • Life and Agrochemicals
    • /
    • s.259
    • /
    • pp.26-29
    • /
    • 2010
  • 작물에 발생하는 각각 바이러스의 증상과 예방대책을 숙지하고, 건전 종자와 건전 묘 사용, 청결 재배, 감염 식물체 조기제거, 신속한 진단요청과 대응 등을 성실히 이행하면 바이러스병 피해를 예방할 수 있다.

  • PDF

Numerical Analysis in Hydrograph Determination for Sluice Gate installed Levee (배수통문이 설치된 제방의 설계수위파형결정에 관한 수치해석)

  • Kim, Jin-Man;Choi, Bong-Hyuck;Oh, Eun-Ho;Cho, Won-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • According to national regulations and its commentary, such as Rivers Design Criteria & Commentary (KWRA, 2009), Foundation Structure Guideline and its Commentary(MLTM, 2014 and KGS, 2009), the integrity evaluation of river levee includes slope stability evaluation of both riverside/protected low-land and piping stability evaluation with respect to foundation and levee body along with water level conditions. In this case the design hydro-graph can be the most important input factor for the integrity evaluation, however it is fact that the national regulations do not provide any proper determination methods regarding hydro-graph. The authors thus executed an integrity evaluation of sluice gate in levee by changing each hydro-graph factor, including rising ordinary water level, lasting flood water level, falling water level, and flood frequency, in order to suggest a determination method of reasonable hydro-graph. As a result, the authors suggested that at least over 57 hours of rising ordinary water level and over 53 hours of lasting flood water level should be considered for the design hydro-graph of sluice gate in levee at Mun-san-jae.

Application of Non-Destructive Testing Techniques to the Evaluation of Integrity of Drilled Shaft (비파괴시험을 이용한 현장타설말뚝의 건전도 평가에 관한 연구)

  • Chae, Jong-Hoon;Yu, Jae-Myung;Kim, Dae-Kyu;Lee, Woo-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.5-14
    • /
    • 2001
  • The NDT(Non-Destructive Testing) technique, detecting defects without damaging foundations, has, lately, been a matter of concern. In this study, the applicability of the borehole methods(CSL, CT, PS) and the surface reflection methods(SE, IR) to the evaluation of integrity of drilled shaft was investigated through field test. Ten drilled shafts, 0.4 m in diameter and 7.0 m long each, were constructed, one shaft with no defect and nine shafts intentionally with the combination of the common defects such as soft bottom, necking, bulging, cave-in, and/or weak concrete. Analysing each NDP test result on the constructed drilled shafts, an optimum combination of the NDP methods as well as the applicability of each NDP method to detecting defects of drilled shaft have been investigated.

  • PDF

An application of integrated water cycle system in U-City (도시 용수 통합관리 방안 연구)

  • Jung, Jin-Hong;Choi, Gye-Woon;Oh, Hyun-Je
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6597-6601
    • /
    • 2013
  • This study aims at suggesting a evaluation method of water cycle soundness in U-City. The distortion of water cycle soundness induced industrialization and urbanization was quantitatively analyzed. In order to evaluate the soundness of water cycle in U-City the reduction ratio of runoff was evaluated in comparison of before the construction of the water recycling facilities for natural water cycle, the reduction ratio of urban water was evaluated in comparison of before the introduction of the artificial recycling facilities for artificial water cycle.

A Recent Research Summary on Smart Sensors for Structural Health Monitoring (구조물 건전성 모니터링을 위한 스마트 센서 관련 최근 연구동향)

  • Kim, Eun-Jin;Cho, Soo-Jin;Sim, Sung-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.10-21
    • /
    • 2015
  • Structural health monitoring (SHM) is a technique to diagnose an accurate and reliable condition of civil infrastructure by collecting and analyzing responses from distributed sensors. In recent years, aging civil structures have been increasing and they require further developed SHM technology for development of sustainable society. Wireless smart sensor and network technology, which is one of the recently emerging SHM techniques, enables more effective and economic SHM system in comparison to the existing wired systems. Researchers continue on development of the capability and extension of wireless smart sensors, and implement performance validation in various in-laboratory and outdoor full-scale experiments. This paper presents a summary of recent (mostly after 2010) researches on smart sensors, focused on the newly developed hardware, software, and validation examples of the developed smart sensors.

Verifications of the Impact-echo Technique for Integrity Evaluations of the Drilled Shaft Using Full Scale Tests (현장시험에 의한 충격반향기법의 말뚝 건전도 검사 적용성 평가)

  • Jung Gyungja;Cho Sung-Min;Kim Hong-Jong;Jung Jong-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.207-214
    • /
    • 2005
  • The reflected signals from the defects of a pile and the boundaries between the pile and soils are analyzed to evaluate the integrity of drilled shafts in the impact-echo test. Signals varied according to both of the stiffness ratio of the pile to defects and that of the pile to surrounding soils. Model tests using the small size pile in the laboratory and numerical analyses have limitations in finding the characteristics of the signals due to different stress wave characteristics and unreliable modelling for the interaction between the pile and soils respectively. Full scale testing piles which have artificial defects are installed by the actual construction method and they were used to investigate the characteristics of reflected signals according to defects and the stiffness ratios of the pile to soils around.