• Title/Summary/Keyword: 건의

Search Result 8,953, Processing Time 0.044 seconds

Spatial Variation Analysis of Soil Characteristics and Crop Growth across the Land-partitioned Boundary II. Spatial Variation of Soil Chemical Properties (구획경계선(區劃境界線)의 횡단면(橫斷面)에 따른 토양특성(土壤特性)과 작물생육(作物生育)에 관한 공간변이성(空間變異性) 분석연구 II. 토양(土壤) 화학성(化學性)의 공간변이성(空間變異性))

  • Park, Moo-Eon;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.257-264
    • /
    • 1989
  • In order to study spatial variability of soil chemical properties across the land-partitioned boundary on Hwadong silt clay loam soil (Fine clayey, mixed, mesic family of Aquic Hapludalfs) in the experimental fie ld of the wheat and Barley Research Institute in Suwon, all measured data were analyzed by means of kriging, fractile diagram, smooth frequency distribution, and autocorrelation. Sampling for soil chemical property analysis was made at 225 intersections of 15x 15 grid with 10m interval from three soil depths (0-10cm, 25-35cm, 50-60cm) in the seven patitioned fields. 1. The coefficient of variance (CV) of various chemical properties varied from 5.4 to 72.7%. Soil pH was classified into the low variation group with CV smaller than 10%, while the other chemical properties belonged to the medium variation group with C.V. between 10 and 100% 2. The approximate number of soil samples for the determination of various chemical properties with error smaller than 10% were two for pH, ten for CEC, 15 for exchangeable Ca, 32 for total nitrogen content, 39 for exchangeable Mg, 40 for exchangeable K, 61 for exchangeable Na, 82 for organic matter content, 212 for available phosphate,. 3. Smooth frequency distribution and fractile diagram showed that available phosphate was in log-normal distribution while others were in normal distribution. 4. Serial correlation analysis revaled that the soil chemical properties had spatial dependence between two nearest neighbouring grid points. Autocorrelation analysis of chemcial properties measured between the serial grid points in the direction of south to north following land-partitioned boundary showed that the zone of influence showing stationarity ranged from 20 to 50m. In the direction of east to west accross land-partitioned boundary, the autocorrelogram of many chemical properies showed peaks with the periodic interval of 30m, which were similar to the partitioned land width. This reveals that the land-partitioned boundary causes soil variability.

  • PDF

Factor Analysis of Soil and Water Quality Indicators in Different Agricultural Areas of the Han River Basins (한강수계 농업지대에서 토양과 수질 지표에 대한 요인 분석)

  • Jung, Yeong-Sang;Yang, Jae-E;Joo, Jin-Ho;Kim, Jeong-Je;Kim, Hyun-Jeong;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.398-404
    • /
    • 1999
  • Factor analysis technique was employed to screen the principal indicators influencing soil and water qualities in the intensively cultivated areas of the Han River Basin. Soil chemical parameters were analyzed for the soil samples collected at intensive farming area in Pyungchang-Gun, and water quality monitoring data were obtained from the agricultural small catchments of Han River Basin during 1996 and 1997. Among the $11{\times}11$ cross correlation matrix, 29 correlations were significant out of 55 soil quality indicator pairs. The overall Kaiser's measure of sampling adequacy(KMS) value was acceptable with 0.60. Most indicators except iron were acceptable. Among soil indicators, the first factors showing high factor loadings were pH, Ca and Mg. The factor loading was the highest for Ca. The second factor could be characterized as phosphate and micronutrient. The third factor was organic matter and EC, and the fourth factor was potassium and Fe. Out of 190 water quality indicators, 86 correlations were significant. Overall KMS value was 0.74, but the KMS values for pH, TSS, Cd, Cu and Fe were lower than 50. The first factor of EC accounts 27.1 percents of the total variance, and showed high factor loadings with Na, Ca, $SO_4$, Mg, K, Cl, $NO_3$, and T-N. The second factor showed high loadings with Zn, Fe, Mn and Cd. The third to seventh factors could be characterized as $PO_4$, TSS, inorganic nitrogen, pH and T-P, and Cu factors, respectively. The factor score for EC was the highest in Kuri, followed by Chunchon, Dunnae and Daegwanryng. The factor score for heavy metals were the highest in the Daegwanryng. The results demonstrated that the factor analysis could be useful to select the most principal factor influencing soil and water qualities in the agricultural watershed.

  • PDF

Assessment of National Soil Loss and Potential Erosion Area using the Digital Detailed Soil Maps (수치 정밀토양도를 이용한 전국 토양 유실량의 평가 및 침식 위험지역의 분석)

  • Jung, Kang-Ho;Sonn, Yeon-Kyu;Hong, Seok-Young;Hur, Seung-Oh;Ha, Sang-Keon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.59-65
    • /
    • 2005
  • This study was performed to estimate the soil loss on a national scale and grade regions with the potential risk of soil erosion. Universal soil loss equation (USLE) for rainfall and runoff erosivity factors (R), cover management factors (C) and support practice factors (P) and revised USLE for soil erodibility factors (K) and topographic factors (LS) were used. To estimate the soil loss, the whole nation was divided into 21,337 groups according to city county, soil phase and land use type. The R factors were high in the southern coast of Gyeongnam and Jeonnam and part of the western coast of Gyeonggi and low in the inland and eastern coast of Gyeongbuk. The K factors were higher in the regions located on the lower streams of rivers and the plain lands of the western coast of Chungnam and Jeonbuk. The average slope of upland areas in Pyeongchang-gun was the steepest of 30.1%. The foot-slope areas from the Taebaek Mountains to the Sobaek Mountains had steep uplands. Total soil loss of Korea was estimated as $50{\times}10^6Mg$ in 2004. The potential risk of soil erosion in upland was the severest in Gyeongnam and the amount of soil erosion was the greatest in Jeonnam. The regions in which annual soil loss was estimated over $50Mg\;ha^{-1}$ were graded as "the very severe" and their acreage was $168{\times}10^3ha$ in 2004. The soil erosion maps of city/county of Korea were made based on digital soil maps with 1:25,000 scale.

Estimation Model for Simplification and Validation of Soil Water Characteristics Curve on Volcanic Ash Soil in Subtropical Area in Korea (난지권 화산회토양의 토색별 토양수분 특성곡선 및 단일화 추정모형)

  • Hur, Seung-Oh;Moon, Kyung-Hwan;Jung, Kang-Ho;Ha, Sang-Keun;Song, Kwan-Cheol;Lim, Han-Cheol;Kim, Geong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.329-333
    • /
    • 2006
  • Most of volcanic ash soils in South Korea are distributed in Jeju province which is an island placed on southern part of Korea and has steep slope mountain area. There are many soils containing high contents of organic matter (OM) derived from volcanic ash in Jejudo, also. Therefore, irrigation and drainage in volcanic ash soil different with general soil which has low OM content have to be applied with another management way, but studies searching appropriate methods for them are set on insufficient situation because the area of volcanic ash soil in South Korea is only 1.3% (130,000ha). This study was conducted for analysis of soil water content and irrigation quantity appropriate for crops cultivated in volcanic ash soil with high OM content. Although soils with different soil color have the same soil texture, soil water characteristics curve by soil color showed the difference of water retention capability by OM content. But, this characteristics classified with soil color could be unified by scaling technique with similitude analysis method which get dimensionless water content using a present water content, a residual water content and saturated water content (or water content at 10kPa). A relation of gravimetric soil water content (GSWC) and dimensionless water content by the results showed a form of power function. The dimensionless water content (DWC) express a relative saturation degree of present water content. This was also expressed by van Genuchten model which describe the relation between relative saturation degrees and matric potentials. These results on soil water characteristics curve (SWCC) of volcanic ash soil will be the basic of irrigation plan in area having high organic contents into soil.

Nutrient Solute Transport during the Course of Freezing and Thawing of Soils in Korea (동결(凍結)과 해빙(解氷) 기간(期間)중 토양내(土壤內) 양분(養分) 용질(溶質)의 이동(移動))

  • Ha, Sng-Keun;Jung, Yeong-Sang;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.135-144
    • /
    • 1995
  • Understanding on nutrient solute movement during the course of freezing and thawing was attempted through laboratory and field obsevations. Small sectioned tubes with 5cm inner diameter, 0.2cm thick and 1cm long were connected to 30cm long soil columns for laboratory study. The columns were filled with soil, and treated with 20mmol/kg $KNO_3$ for upper 5cm. The upper end was set in the freezing section, and the lower end was set in the refrigerating section of a refrigerator. Temperature was controlled at $-7({\pm}1)^{\circ}C$ and $1.5({\pm}1)^{\circ}C$, respectively. After top 5cm soil was frozen, the columns were sectioned, and analyzed for $NO_3^-$, $NH_4^+$ and $K^+$. For field study, the 20cm inner diameter and lm long soil columns were installed in Chuncheon and Daegwanryung, where the altitude was 74m and 840m, respectively. The soils used were silt loam and clay loam. The top 20cm soils were treated with 50mmol/kg as $KNO_3$. The soil columns were taken during winter freezing and after thawing. By laboratiry study, upward movement of $NO_3^-$ and $K^+$ during the course of freezing was confirmed. The upward movement of $K^+$ was, however, one fifth to one tenth of $NO_3^-$. The upward movement of inorganic nitrogen as well as laboratory during the course of freezing, but large amount of nitrogen was lost from the profile after thawing in early spring. Leached nitrogen from the upper 20cm to lower part was 17 to 24 percents. The maximum depth of leaching during the experiment was 50cm for all soils. The net loss of inorganic nitrogen from the whole profile ranged 8.7 to 39.5 percents. The net loss was greater in Daegwanryung where temperature was lower and snowfall was larger than Chuncheon, and the loss was greater from the silt loam soil than clay loam soil of which percolation rate was small. The results implied that reasons for nitrogen loss during the winter might include surface washing by snow melt as well as leaching and denitrification.

  • PDF

The Effect of Application Levels of Slurry Composting and Bio-filtration Liquid Fertilizer on Soil Chemical Properties and Growth of Radish and Corn (총각무와 옥수수 재배시 SCB액비 시용수준이 토양화학성과 생육에 미치는 영향)

  • Kang, Seong-Soo;Kim, Min-Kyeong;Kwon, Soon-Ik;Kim, Myong-Suk;Yoon, Sung-Won;Ha, Sang-Gun;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1306-1313
    • /
    • 2011
  • A liquid fertilizer treated with slurry composting and biofiltration (SCB) process has been applied increasingly on agricultural field but the effects on the soil properties and crop production has not been throughly evaluated. This study was conducted to investigate the effect of the SCB application on soil chemical properties and the growth of radish and corn. SCB liquid fertilizer as a basal fertilization was treated with five levels based on $6kg\;10a^{-1}$ for radish and $10kg\;10a^{-1}$ for corn. The experimental design was the completely randomized block design with five levels and three replicates. Electrical conductivity (EC), $NO_3$-N, Exch. K and Exch. Na increased depending on the treatment levels of SCB. There were no changes in soil organic matter, Avail. $P_2O_5$, Exch. Ca and Exch. Mg. EC, $NO_3$-N and Exch. Na content decreased as precipitation increased. Especially, they decreased up to the initial condition before the treatment after the heavy rainy season in 2008. Although Exch. K decreased at the rainy season, they remained relatively higher content after the experiment on August, 2008. Fresh weight and the amount of N uptake of radish increased due to the levels of SCB, but corn did not present any significant increase. It is recommended that we need to decide the proper amount of SCB as well as the application method on the field to increase the productivity and decrease environmental stress. Additional experiments also need to clarify the effect of the trace element and heavy metal accumulations due to long term application of SCB.

Impacts of Topography on Microbial Community from Upland Soils in Gyeongnam Province (경남지역 밭 토양 지형이 미생물 군집에 미치는 영향)

  • Lee, Young-Han;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.485-491
    • /
    • 2011
  • The present study evaluated the soil microbial communities by fatty acid methyl ester (FAME) in upland soils at 25 sites in Gyeongnam Province. The total bacteria content was $143nmol\;g^{-1}$ for in inclined piedmont, $75nmol\;g^{-1}$ for fan and valley, $49nmol\;g^{-1}$ for hill areas, and $44nmol\;g^{-1}$ for riversider plain. The fungi content was 2.4 times higher in sandy loam than $21nmol\;g^{-1}$ in silt loam (p<0.01). In addition, inclined piedmont soils had a significantly higher ratio of monounsaturated fatty acids to saturated fatty acids compared with fan and valley soils (p<0.05). The communities of total bacteria and arbuscular mycorrhizal fungi in the inclined piedmont soils were significantly higher than those in the fan and valley soils and in the riversider plain soils (p<0.05), whereas the community of fungi was significantly lower (p<0.05). In principal component analyses of soil microbial communities, our findings showed that inclined piedmont was positive relationship with total bacteria and actinomycetes in upland soils.

Influence of Soil pH, Total and Mobile Contents on Copper and Zinc Uptake by Lettuce Grown in Plastic Film Houses (시설재배지 토양 pH와 전함량 및 이동태 함량이 상추의 구리와 아연 흡수에 미치는 영향)

  • Kim, Rog-Young;Sung, Jwa-Kyung;Lee, Ju-Young;Jang, Byoung-Choon;Ha, Sang-Keun;Lee, Jong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1042-1047
    • /
    • 2011
  • Copper and Zinc are essential trace elements for all living organisms. When presenting in excess amount in soils, however they can be toxic to plants. In order to examine the transfer of Cu and Zn from soils to plants and to predict their contents in plants using soil factors, we investigated total and mobile contents of Cu and Zn in soils and their uptake by lettuce (Lactuca sativa L.) in plastic film houses. Total Cu and Zn contents in soils were $17.5{\sim}65.9mg\;kg^{-1}$ (mean: $39.3mg\;kg^{-1}$) and $63.2{\sim}200mg\;kg^{-1}$ (mean: $137mg\;kg^{-1}$), respectively. Mobile Cu and Zn contents in soils were $(0.04){\sim}0.55mg\;kg^{-1}$ (mean: $0.18mg\;kg^{-1}$) and $(0.05){\sim}2.62mg\;kg^{-1}$ (mean: $0.47mg\;kg^{-1}$), respectively. Soil pH ranged from 5.4 to 7.3 and OM from 24.1 to $59.9g\;kg^{-1}$. Mean Cu contents in leaves and roots of lettuce were 9.20 and $17.2mg\;kg^{-1}$, respectively which showed that Cu was accumulated mainly in root parts of lettuce and not easily transported to leaves. In contrast, Zn was fairly evenly distributed in leaves and roots with mean values of 54.5 and $56.7mg\;kg^{-1}$, indicating relative high mobility of Zn in lettuce. Transfer factors of Cu and Zn from soil total contents to roots and leaves of lettuce ($TFS_tR$ and $TFS_tL$) were between 0.1 and 1, while transfer factors from soil mobile contents to roots and leaves ($TFS_mR$ and $TFS_mL$) were between 10 and 1000. Transfer factors of Zn were higher than those of Cu, showing Zn was more easily absorbed by plants than Cu. Cu and Zn uptake was stronger influenced by soil pH and mobile contents than total contents and OM and could be significantly described by multiple regression equations including soil pH and soil mobile contents as variables.

Prediction of Soil Erosion from Agricultural Uplands under Precipitation Change Scenarios (우리나라 강우량 변화 시나리오에 따른 밭토양의 토양 유실량 변화 예측)

  • Kim, Min-Kyeong;Hur, Seong-Oh;Kwon, Soon-Ik;Jung, Goo-Bok;Sonn, Yeon-Kyu;Ha, Sang-Keun;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.789-792
    • /
    • 2010
  • Major impacts of climate change expert that soil erosion rate may increase during the $21^{st}$ century. This study was conducted to assess the potential impacts of climate change on soil erosion by water in Korea. The soil loss was estimated for regions with the potential risk of soil erosion on a national scale. For computation, Universal Soil Loss Equation (USLE) with rainfall and runoff erosivity factors (R), cover management factors (C), support practice factors (P) and revised USLE with soil erodibility factors (K) and topographic factors (LS) were used. RUSLE, the revised version of USLE, was modified for Korean conditions and re-evaluate to estimate the national-scale of soil loss based on the digital soil maps for Korea. The change of precipitation for 2010 to 2090s were predicted under A1B scenarios made by National Institute of Meteorological Research in Korea. Future soil loss was predicted based on a change of R factor. As results, the predicted precipitations were increased by 6.7% for 2010 to 2030s, 9.5% for 2040 to 2060s and 190% for 2070 to 2090s, respectively. The total soil loss from uplands in 2005 was estimated approximately $28{\times}10^6$ ton. Total soil losses were estimated as $31{\times}10^6$ ton in 2010 to 2030s, $31{\times}10^6$ ton in 2040 to 2060s and $33{\times}10^6$ ton in 2070 to 2090s, respectively. As precipitation increased by 17% in the end of $21^{st}$ century, the total soil loss was increased by 12.9%. Overall, these results emphasize the significance of precipitation. However, it should be noted that when precipitation becomes insignificant, the results may turn out to be complex due to the large interaction among plant biomass, runoff and erosion. This may cause increase or decrease the overall erosion.

Long-term Monitoring Study of Soil Chemical Contents and Quality in Paddy Fields (논토양의 화학성과 질의 장기 변동)

  • Kim, M.S.;Kim, W.I.;Lee, J.S.;Lee, G.J.;Jo, G.L.;Ahn, M.S.;Choi, S.C.;Kim, H.J.;Kim, Y.S.;Choi, M.T.;Moon, Y.H.;Ahn, B.K.;Kim, H.W.;Seo, Y.J.;Lee, Y.H.;Hwang, J.J.;Kim, Y.H.;Ha, S.K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.930-936
    • /
    • 2010
  • There is very important to investigate long-term trend of soil chemical properties and quality index for sustainable agriculture and production of agricultural safety products. Monitoring on soil chemical properties in paddy soils was conducted as one cycle with 4 years from 1999 to 2007. Paddy soil samples were taken from 4,007, 1,970, 2,070 sites in 1999, 2003 and 2007, respectively. With these data, soil quality index (SQI) was evaluated by method that Yoon et al suggested in 2004. Chemical properties of paddy soils were 5.8 for pH, 24 g $kg^{-1}$ for organic matter, 132 mg $kg^{-1}$ for available phosphate, 0.29 cmol_c\; kg-1 for exchangeable potassium, 4.7 $cmol_c\;kg^{-1}$ for exchangeable calcium, 1.3 $cmol_c\;kg^{-1}$ for exchangeable magnesium and 126 mg $kg^{-1}$ for available silicate in 2007. Long-term change was shown that pH has increased gradually whereas exchangeable potassium has decreased. However, reasonably large changes were found. Exchangeable calcium and available silicate level in 1999 was 4.0 $cmol_c\;kg^{-1}$, 86 mg $kg^{-1}$, but had risen to 4.7 $cmol_c\;kg^{-1}$, 126 mg $kg^{-1}$ in 2007, respectively. The change of paddy soils quality index was increased gradually and increasement of silicate quality index was higher than other quality indicators.