• Title/Summary/Keyword: 건식

Search Result 2,073, Processing Time 0.037 seconds

Technical trend of the Plating and Surfacetreatment for echo-environment (친환경 도금표면처리 기술동향)

  • Kim, Yu-Sang;Kang, Gye-Myeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.112-114
    • /
    • 2009
  • 화학약품 사용에 의한 환경오염을 근원적으로 해결하고, 친환경 건식표면처리 스테인리스 홀로그램 등의 친환경 건식표면처리 소재개발 기술경쟁력 향상에 기여하는 국내, 해외의 기술동향과 정보자료를 수집하여 수요자에게 심층 분석을 제공하고자 한다.

  • PDF

Review on Spent Nuclear Fuel Performance and Degradation Mechanisms under Long-term Dry Storage (사용후핵연료의 장기 건식 건전성 성능과 주요 열화 기구에 관한 고찰)

  • Kim, Juseong;Kook, Donghak;Sim, Jeehyung;Kim, Yongsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.333-349
    • /
    • 2013
  • As the capacity of spent nuclear fuel storage pool at reactor sites becomes saturated in ten years, long term dry storage strategy has been recently discussed as an alternative option in Korea. In this study, we reviewed safety-criteria-related research results on spent nuclear fuel performance and integrity under long-term dry storage and proposed the direction and the scope of future domestic research and development. Creep and hydride effect in relation to the embrittlement are known to be the major degradation mechanisms of the spent fuels during the long term dry storage. However, recent research results showed that hydride reorientation and hydride embrittlement are one of the most critical factors to the spent fuel integrity. Accordingly safety criteria of US and Japan for the storage system are basically founded on those mechanisms. However, in Korea, not only in-pile but out-of-pile experimental data have not been generated to understand fuel cladding degradation and to determine the criteria to ensure the safety. In addition, the transient behavior of the spent fuel during transportation also needs to be thoroughly examined. Therefore, various experimental research and development will be required to establish our own safety criteria for future long-term dry storage of domestic spent fuels.

Preliminary Shielding Analysis of the Concrete Cask for Spent Nuclear Fuel Under Dry Storage Conditions (건식저장조건의 사용후핵연료 콘크리트 저장용기 예비 방사선 차폐 평가)

  • Kim, Tae-Man;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • The Korea Radioactive Waste Agency (KORAD) has developed a concrete cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. During long-term storage of spent nuclear fuel in concrete casks kept in dry conditions, the integrity of the concrete cask and spent nuclear fuel must be maintained. In addition, the radiation dose rate must not exceed the storage facility's design standards. A suitable shielding design for radiation protection must be in place for the dry storage facilities of spent nuclear fuel under normal and accident conditions. Evaluation results show that the appropriate distance to the annual dose rate of 0.25 mSv for ordinary citizens is approximately 230 m. For a $2{\times}10$ arrangement within storage facilities, rollover accidents are assumed to have occurred while transferring one additional storage cask, with the bottom of the cask facing the controlled area boundary. The dose rates of 12.81 and 1.28 mSv were calculated at 100 m and 230 m from the outermost cask in the $2{\times}10$ arrangement. Therefore, a spent nuclear fuel concrete cask and storage facilities maintain radiological safety if the distance to the appropriately assessed controlled area boundary is ensured. In the future, the results of this study will be useful for the design and operation of nuclear power plant on-site storage or intermediate storage facilities based on the spent fuel management strategy.

Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating (건식 접착 구조물의 금속 코팅 두께에 따른 접착강도 변화)

  • Kim, Gyu Hye;Kwon, Da Som;Kim, Mi Jung;Kim, Su Hee;Yoon, Ji Won;An, Tea Chang;Hwang, Hui Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.673-677
    • /
    • 2016
  • Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively.

Fabrication and characterization of the nano- and micro-particles applied dry adhesives (나노 또는 마이크로 입자의 전사를 이용한 건식 접착제의 제조 및 특성 분석)

  • Yu, Min Ji;Vu, Minh Canh;Han, Sukjin;Park, Jae Hong;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • In this study, the micro- and nano-particles were used and their shapes were transferred into the polydimethylsiloxane (PDMS) film to fabricate the dry adhesives and their properties were investigated. The Cu nanoparticles of the sizes of 20 nm, 40 nm and 70 nm and the polymethylmethacrylate (PMMA) beads of the size of $5{\mu}m$ were used to transfer their images and the resultant properties of the dry adhesives were compared. The effects of particle size and materials on the mechanical property, tensile adhesion strength, light transmittance, surface morphology, water contact angle were studied. The dry adhesives obtained from the transfer process of Cu nanoparticles with the size of 20 nm resulted in the enhancement of tensile adhesion strength more than 300% compared to that of the bare PDMS. The formation of nanostructure of large surface area on the surface of the PDMS film by the Cu nanoparticles may responsible for the improvement. This study suggests that the use of nanoparticles during the fabrication of PDMS dry adhesives is easy and effective and could be applied to the fabrication of the medical patch.

Behaviors of Nuclear Spent Fuel Dry Storage System for Flask Dropping and Truck Collision (플라스크 낙하 및 이송차량 충돌에 대한 사용후 핵연료 건식저장시스템의 거동)

  • Song, Hyung-Soo;Min, Chang-Shik;Yoon, Dong-Yong;Chung, Hong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • Delaying and objection for the construction of storage spent-fuel disposal has prompted to consider expanding on-site storage of spent reactor fuel since it can eliminate the need for costly and difficult shipping and control of the spent fuel completely under the direction of the owner-utility. The dry storage unit developed in Canada can accommodate Korea heavy water reactor fuel elements and become a candidate for the Korean market. In this paper, finite element analysis were carried out in order to investigate the structural behavior of the nuclear spent fuel dry storage system, which is subjected to impact loads such as collision of a truck load and dropping of flask under the irregular operation.

Study on the Pyro-metallurgical Process for Recovery of Valuable Metal in the Sludge Originated from PCB Manufacturing Process (PCB 제조 공정 중 발생한 슬러지 내 유가금속 회수를 위한 건식야금 공정에 관한 연구)

  • Han, Chulwoong;Son, Seong Ho;Lee, Man-Seung;Kim, Yong Hwan
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.87-95
    • /
    • 2019
  • This study investigated the effect of process variables for smelting of recovery of valuable metal in the sludge generated from PCB. The moisture and organics in the sludge was removed by preteatment process. The phase equilibria and slag system was selected by thermodynamic phase calculation program and the process variable of pyro-metallurgical process such as reductant. Smelting temperature and holding time for a recovery of valuable metal was studied.

Strength properties of Cement Mortar by the Nano admixture of dry process and wet process (건식 및 습식 나노 혼화재를 사용한 시멘트 모르타르의 강도 특성)

  • Kim, Yeon-Hee;Choi, Eung-Kyoo;Park, Jong-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1452-1457
    • /
    • 2011
  • Strength properties of cement mortar was carried out silica fume(SF) and Titanium Dioxide($TIO_2$) by nano admixture of dry process and wet process. Experimental parameters were Nano admixture as the dry process and wet process 5, 10, 15 or 20%. As a result, strength properties of cement mortar by silica fume(SF) and Titanium Dioxide($TIO_2$) were similar and in a comparative experiment of the dry process and wet process Nano admixture using wet process Nano admixture showed a greater strength properties.

Recovery of High Purity Sn by Multi-step Reduction of Sn-Containing Industrial Wastes (건식 환원 공정을 이용한 고순도 주석 회수)

  • Lee, Sang-Ro;Lee, Man-Seung;Kim, Hyun You
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.11-15
    • /
    • 2015
  • In order to develop a technology for the recovery of pure tin from the Sn containing industrial wastes (SIWs), a process consisted of high temperature reduction and electrorefining was investigated. The tin which exists as oxide in SIWs was successfully reduced by two consecutive high temperature treatments and 92.7% of the tin was recovered. The purity of the tin thus obtained was increased to 99.87% by electrorefining. By applying the results obtained in this work, a commercial process can be developed to produce pure tin metals from domestic spent resources, which can reduce the amount of tin imported from abroad.

공기 유량의 시간 변화에 따른 $U_3O_8$ 타원입자에 대한 거동 특성 해석

  • Kim, Yeong-Hwan;Jeong, Jae-Hu;Lee, Hyo-Jik;Park, Byeong-Seok;Yun, Ji-Seop
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2007.11a
    • /
    • pp.305-306
    • /
    • 2007
  • ACP(Advanced Spent Fuel Conditioning Process)의 금속전환로에 $U_3O_8$을 공급하기 위하여 20 kgHM/batch의 $UO_2$ 펠릿(pellets)을 처리할 수 있는 건식분말화 장치가 개발되고있다. 건식분말화 장치는 500 $^{\circ}C$온도에서 공기를 공급하여 일정한 입도범위의 균질한 $U_3O_8$을 만든다. 이런 건식 분말화 장치의 효율을 높이기 위해서는 반웅로에 불어 넣어주는 공기의 유량을 증가시킬 필요가 있다. 하지만 공기와 반응하여 생성되는 $U_3O_8$ 입자는 그 크기가 최소 3 ${\mu}$m 정도로 매우 미세하여,반응로 출구를 통해 외부로 빠져나갈 가능성 이있다. 이를 방지하기 위해 분말화 장치 출구 바깥에는 필터가 설치되어 있으나 공기와 함께 $U_3O_8$ 입자가 계속해서 빠져 나갈 경우 입자로 인해 필터가 막혀 제 기능을 할 수 없게 된다. 따라서 건식 분말화 장치는 미세한 $U_3O_8$ 입자가 반응로 밖으로 빠져나가지 않도록 입구에서의 공기 유량을 일정 수준 이하로 조절해주는 것이 필요하다. 이 연구의 목적은 초기 유량으로부터 유량을 점점 증가시키면서 시간변화에 따른 입자 거동 특성을 해석하며, 결과로부터 주어진 크기의 타원입자에 대해 최대 허용 공기 유량을 결정하고자한다. 이 해석을 위해 유동과 입자를 동시에 해석할 수 있는 ANSYS-CFX 5.7.1과 ANSYS-CFX 10.0 두 가지의 소프트웨어가 사용되었다. 해석 결과를 바탕으로 좀더 정확한 유량 한계치 계산을 위해 추가로 수행되어야 할 해석에 대해 제안하였다.

  • PDF