• Title/Summary/Keyword: 건식저장

Search Result 186, Processing Time 0.026 seconds

Global Trend of CO2 Capture Technology Development (이산화탄소 포집기술 국외 기술개발 동향)

  • Baek, Jeom-In
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.143-165
    • /
    • 2016
  • The amount of greenhouse gas emission reduction based on INDCs (Intended Nationally Determined Contributions) submitted to UN by each party is not sufficient to achieve the Paris Agreement's aim to "hold the increase in the global average temperature to well below $2^{\circ}C$ above pre-industrial levels and to pursue efforts to limit the temperature increase to $1.5^{\circ}C$" which was determined in the $21^{st}$ Conference of the Parties to the UNFCCC (COP 21). Accordingly, the emission reduction target of each party will be revised for the $2^{\circ}C$ goal. Among the several options to reduce the carbon emission, CCS (Carbon Capture and Storage) is a key option to curb $CO_2$ emissions from large emission sources such as fossil-based power plants, cement plants, and steel production plants. A large scale CCS demonstration projects utilizing $1^{st}$ generation $CO_2$ capture technologies are under way around the world. It is anticipated, however, that the deployment of those $1^{st}$ generation $CO_2$ capture technologies in great numbers without government support will be difficult due to the high capture cost and considerable increase of cost of electricity. To reduce the carbon capture cost, $2^{nd}$ and $3^{rd}$ generation technologies are under development in a pilot or a bench scale. In this paper, current status of large scale CCS demonstration projects and the $2^{nd}$ and $3^{rd}$ generation capture technologies are summarized. Novel capture technologies on wet scrubbing, dry sorbent, and oxygen combustion are explained in detail for all capture areas: post-combustion capture, pre-combustion capture, and new combustion technologies.

Analysis of Repository Systems for Designing a Archive System of Large Science Data (대용량 과학데이터 아카이브 시스템 설계를 위한 리포지터리 시스템 분석)

  • Lim, Jongtae;Seo, Indeok;Song, Heesub;Yoo, Seunghun;Jeong, Jaeyun;Cho, Jungkwon;Paul, Aniruddha;Ko, Geonsik;Kim, Byounghoon;Park, Yunjeong;Song, Jinwoo;Lee, Seohee;Jeon, Hyeonwook;Choi, Minwoong;Noh, Yeonwoo;Choi, Dojin;Kim, Yeonwoo;Bok, Kyoungsoo;Lee, Jeonghoon;Lee, Sanghwon;Yoo, Jaesoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.21-22
    • /
    • 2016
  • 본 논문에서는 대용량 과학데이터 아카이브 시스템 설계를 위해 기존 리포지터리 시스템을 분석한다. 대용량 과학데이터를 효율적으로 수집하고 저장하기 위한 아카이브 시스템 아키텍쳐 설계를 위하여 현재 서비스되고 있는 다양한 과학데이터 리포지터리 시스템을 분석한다. 분석한 내용을 바탕으로 대용량 과학데이터 아카이브 시스템 아키텍쳐를 설계하기 위한 기술적인 요구사항을 도출한다.

  • PDF

Analysis of CO2 Emission and Effective CO2 Capture Technology in the Hydrogen Production Process (수소생산 공정에서의 CO2 배출처 및 유효포집기술 분석)

  • Kyung Taek Woo;Bonggyu Kim;Youngseok So;Munseok Baek;Seoungsoo Park;Hyejin Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.77-83
    • /
    • 2023
  • Energy consumption is increased by rapid industrialization. As a result, climate change is accelerating due to the increase in CO2 concentration in the atmosphere. Therefore, a shift in the energy paradigm is required. Hydrogen is in the spotlight as a part of that. Currently 95% of hydrogen is fossil fuel-based reforming hydrogen which is accompanied by CO2 emissions. This is called gray hydrogen, if the CO2 is captured and emission of CO2 is reduced, it can be converted into blue hydrogen. There are 3 technologies to capture CO2: absorption, adsorption and membrane technology. In order to select CO2 capture technology, the analysis of the exhaust gas should be carried out. The concentration of CO2 in the flue gas from the hydrogen production process is higher than 20%if water is removed as well as the emission scale is classified as small and medium. So, the application of the membrane technology is more advantageous than the absorption. In addition, if LNG cold energy can be used for low temperature CO2 capture system, the CO2/N2 selectivity of the membrane is higher than room temperature CO2 capture and enabling an efficient CO2 capture process. In this study, we will analyze the flue gas from hydrogen production process and discuss suitable CO2 capture technology for it.

Physicochemical Properties of Diverse Rice Species (품종별 쌀의 이화학적 특성)

  • Choi, Ok-Ja;Kim, Yong-Doo;Shim, Jae-Han;Noh, Myeong-Hee;Shim, Ki-Hoon
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.532-538
    • /
    • 2012
  • Seven rice varieties (Dasan, Keunseon, Goami, Baekjinju, Seolgaeng, Hangangchal and Heukseol) were used to study the physicochemical properties of dry milled (200-mesh) rice flour species. The moisture and crude protein contents of rice were 15.00-15.10% and 6.09-8.21%, respectively. The crude lipid and crude ash of rice were 0.21-1.02% and 0.37-1.62%, respectively. As for the Hunter's color value, the L value was highest in the Dasan flour (96.47); the a value was highest in the Heukseol flour (5.03); and the b value was highest in the Baekjinju flour (3.36). The water aborption index was highest in the Goami flour (1.45), and the water solubility index was highest in the Hangangchal flour (9.16%). The amylose contents of the rice flour species were highest in the Goami (26.42%) rice flour, followed by the Dasan (19.39%), Seolgaeng (19.24%), Keunseon (18.06%), Heukseol (15.52%), Baekjinju (9.16%), and Hangangchal (0.84%) rice flour. In the X-raydiffractin patterns of the diverse species, seven tice varieties showed A-type crystallinity. As for the amylogram properties, the initial pasting temperature was 58.00-$69.03^{\circ}C$. The maximum viscosity was highest in the Dasan flour. The Heukseol flour had the lowest maximum viscosity, breakdown, and setback. In terms of the thermal properties of the differential scanning calorimeter (DSC), the onset temperature was 59.03-$66.84^{\circ}C$; the peak temperature, 66-70-$72.82^{\circ}C$; and the end temperature, 74.06-$78.66^{\circ}C$. The enthalpy (${\Delta}H$) was lowest in the Heukseol flour (7.59 J/g) and highest in the Seolgaeng flour (11.36J/g).

Study of Hydrodynamics and Reaction Characteristics of K-based Solid Sorbents for CO2 Capture in a Continuous System Composed of Two Bubbling Fluidized-bed Reactors (두 개의 기포유동층으로 구성된 연속장치에서 CO2 회수를 위한 K-계열 고체흡수제의 수력학적 특성 및 반응특성)

  • Kim, Ki-Chan;Kim, Kwang-Yul;Park, Young Cheol;Jo, Sung-Ho;Ryu, Ho-Jung;Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.499-505
    • /
    • 2010
  • In this study, hydrodynamics and reaction characteristic of K-based solid sorbents for $CO_2$ capture were investigated using a continuous system composed of two bubbling fluidized-bed reactors(1.2 m tall bed with 0.11 m i.d.). Potassium-based dry sorbents manufactured by the Korea Electric Power Research Institute were used, which were composed of $K_2CO_3$ of 35% for $CO_2$ absorption and supporters of 65% for mechanical strength. The continuous system consists of two bubbling fluidized-bed reactors, solid injection nozzle, riser, chiller, analyzer and heater for regeneration reaction. The minimum fluidizing velocity of the continuous system was 0.0088 m/s and the solid circulation rate measured was $10.3kg/m^2{\cdot}s$ at 1.05 m/s velocity of the solid injection nozzle. The $CO_2$ concentration of the simulated gas was about 10 vol% in dry basis. Reaction temperature in carbonator and regenerator were maintained about $70^{\circ}C$ and $200^{\circ}C$, respectively. Differential pressures, which were maintained in carbonator and regenerator, were about $415mmH_2O$ and $350mmH_2O$, respectively. In order to find out reaction characteristics of dry sorbents, several experiments were performed according to various experimental conditions such as $H_2O$ content(7.28~19.66%) in feed gas, velocity (0.053~0.103 m/s) of simulated gas, temperature($60{\sim}80^{\circ}C$) of a carbonator, temperature($150{\sim}200^{\circ}C$) of a regenerator and solid circulation rate($7.0{\sim}10.3kg/m^2{\cdot}s$). The respective data of operating variables were saved and analyzed after maintaining one hour in a stable manner. As a result of continuous operation, $CO_2$ removal tended to increase by increasing $H_2O$ content in feed gas, temperature of a regenerator and solid circulation rate and to decrease by increasing temperature of a carbonator and gas velocity in a carbonator.

Analysis of Reentry Test for the Donors Showing Reactivity or Grey Zone in a HBV Surface Antigen Assay by a Chemiluminescent Immunoassay (화학발광면역법에 의한 HBV 항원선별검사에서 양성 및 Grey Zone 결과를 보인 헌혈자의 헌혈 보류 해제 검사 결과 분석)

  • Shin, Sunmi;Kang, Jungwon;Lee, Kyeong Rak;Shin, Geon Sik;Kang, Jae-won;Seo, Young Ik;Min, Hyukki
    • The Korean Journal of Blood Transfusion
    • /
    • v.29 no.3
    • /
    • pp.301-309
    • /
    • 2018
  • Background: If donors who were deferred due to the reactivity or grey zone in HBV surface antigen (HBsAg) assay want to donate blood again, they need to pass reentry tests. On the other hand, approximately half of the donors who are subject to the reentry tests cannot be reentered. This study examined the association between the sample to cutoff (S/Co) value of the HBsAg assay and the final results of the reentry test. Methods: This study analyzed the S/Co values of the HBsAg assay and the final results of the reentry tests for the 3,947 donors from January 2008 to December 2017 using the database of Blood Information Management System of the Korean Red Cross. Results: 1,767 donors (44.8%) were not reentered among 3,947 deferred donors. Among 1,585 donors showing ${\geq}10$ of the S/Co value in the HBsAg screening test, 1,542 donors (97.3%) were not reentered. The additional reentry tests were performed on 120 donors who were not reentered in the first reentry test; 98 donors (81.7%) were still not reentered. Overall, 4.6% of the donors showing a grey zone in the HBsAg assay were not reentered. Conclusion: The reentry test needs to be restricted for the deferred donors showing a more than 10 S/Co value. The application of the grey zone of current HBsAg assay will need to be continued to enhance the HBV-related blood safety.