• Title/Summary/Keyword: 건설 기술

Search Result 8,874, Processing Time 0.031 seconds

Enhancing machine learning-based anomaly detection for TBM penetration rate with imbalanced data manipulation (불균형 데이터 처리를 통한 머신러닝 기반 TBM 굴진율 이상탐지 개선)

  • Kibeom Kwon;Byeonghyun Hwang;Hyeontae Park;Ju-Young Oh;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.519-532
    • /
    • 2024
  • Anomaly detection for the penetration rate of tunnel boring machines (TBMs) is crucial for effective risk management in TBM tunnel projects. However, previous machine learning models for predicting the penetration rate have struggled with imbalanced data between normal and abnormal penetration rates. This study aims to enhance the performance of machine learning-based anomaly detection for the penetration rate by utilizing a data augmentation technique to address this data imbalance. Initially, six input features were selected through correlation analysis. The lowest and highest 10% of the penetration rates were designated as abnormal classes, while the remaining penetration rates were categorized as a normal class. Two prediction models were developed, each trained on an original training set and an oversampled training set constructed using SMOTE (synthetic minority oversampling technique): an XGB (extreme gradient boosting) model and an XGB-SMOTE model. The prediction results showed that the XGB model performed poorly for the abnormal classes, despite performing well for the normal class. In contrast, the XGB-SMOTE model consistently exhibited superior performance across all classes. These findings can be attributed to the data augmentation for the abnormal penetration rates using SMOTE, which enhances the model's ability to learn patterns between geological and operational factors that contribute to abnormal penetration rates. Consequently, this study demonstrates the effectiveness of employing data augmentation to manage imbalanced data in anomaly detection for TBM penetration rates.

A study on the risk index for tunnel collapse (터널 붕괴 위험도 지수 연구)

  • Jeong-Heum Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.421-433
    • /
    • 2024
  • As the utilization of underground space increases, preventing collapse accidents during tunnel construction has become a significant challenge. This study aims to quantitatively assess the risk of tunnel collapse during construction by analyzing various influencing factors and proposing a tunnel collapse risk index based on these factors. For the 14 major influencing factors affecting tunnel collapse, weights were calculated using the analytic hierarchy process (AHP) method. Data from 27 collapse cases were collected, and Monte Carlo simulation was used to calculate the grade scores for each influencing factor. These scores were then synthesized to derive the tunnel collapse risk index. The average value of the tunnel collapse risk index was analyzed to be 49.359 points. Future comparisons with section-by-section evaluation results of tunnel collapse risk will allow for the assessment of whether a specific section has a lower or higher collapse risk. This study provides a systematic method for quantitatively evaluating the key factors of tunnel collapse risk, thereby contributing to the prevention of collapse accidents during tunnel construction and the establishment of appropriate countermeasures. Future research is expected to enhance the reliability of the tunnel collapse risk index by incorporating more field data and improving the accuracy of tunnel collapse risk assessment based on this index.

A Study on the Water Reuse Systems (중수도개발연구(中水道開發研究))

  • Park, Chung Hyun;Lee, Seong Key;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.113-125
    • /
    • 1984
  • Water supply has been mainly dependent on the construction of the dams in Korea. It is difficult, however, to continue to construct dams for many reasons, such as the decrease of construction sites, the increase of construction costs, the compensation of residents in flooded areas, and the environmental effects. Water demands have increased and are expected to continue increasing due to the concentration of people in the cities, the rise of the living standard, and rapid industrial growth. It is acutely important to find countermeasures such as development of ground water, desalination, and recycling of waste water to cope with increasing water demands. Recycling waste water includes all means of supplying non-potable water for their respective usages with proper water quality which is not the same quality as potable water. The usages of the recycled water include toilet flushing, air conditioning, car washing, yard watering, road cleaning, park sprinkling, and fire fighting, etc. Raw water for recycling is obtained from drainage water from buildings, toilets, and cooling towers, treated waste water, polluted rivers, ground water, reinfall, etc. The water quantity must be considered as well as its quality in selecting raw water for the recycling. The types of recycling may be classified roughly into closed recycle systems and open recycle systems, which can be further subdivided into individual recycle systems, regional recycle systems and large scale recycle system. The treatment methods of wastewater combine biochemical and physiochemical methods. The former includes activated sludge treatment, bio-disc treatment, and contact aeration treatment, and the latter contains sedimentation, sand filtration, activated carbon adsorption, ozone treatment, chlorination, and membrane filter. The recycling patterns in other countries were investigated and the effects of the recycling were divided into direct and indirect effects. The problems of water reuse in recycle patterns were also studied. The problems include technological, sanitary, and operational problems as well as cost and legislative ones. The duties of installation and administrative organization, structural standards for reuse of water, maintenance and financial disposal were also studied.

  • PDF

Development of an anisotropic spatial interpolation method for velocity in meandering river channel (비등방성을 고려한 사행하천의 유속 공간보간기법 개발)

  • You, Hojun;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.455-465
    • /
    • 2017
  • Understanding of the two-dimensional velocity field is crucial in terms of analyzing various hydrodynamic and fluvial processes in the riverine environments. Until recently, many numerical models have played major roles of providing such velocity field instead of in-situ flow measurements, because there were limitations in instruments and methodologies suitable for efficiently measuring in the broad range of river reaches. In the last decades, however, the advent of modernized instrumentations started to revolutionize the flow measurements. Among others, acoustic Doppler current profilers (ADCPs) became very promising especially for accurately assessing streamflow discharge, and they are also able to provide the detailed velocity field very efficiently. Thus it became possible to capture the velocity field only with field observations. Since most of ADCPs measurements have been mostly conducted in the cross-sectional lines despite their capabilities, it is still required to apply appropriate interpolation methods to obtain dense velocity field as likely as results from numerical simulations. However, anisotropic nature of the meandering river channel could have brought in the difficulties for applying simple spatial interpolation methods for handling dynamic flow velocity vector, since the flow direction continuously changes over the curvature of the channel shape. Without considering anisotropic characteristics in terms of the meandering, therefore, conventional interpolation methods such as IDW and Kriging possibly lead to erroneous results, when they dealt with velocity vectors in the meandering channel. Based on the consecutive ADCP cross-sectional measurements in the meandering river channel. For this purpose, the geographic coordinate with the measured ADCP velocity was converted from the conventional Cartesian coordinate (x, y) to a curvilinear coordinate (s, n). The results from application of A-VIM showed significant improvement in accuracy as much as 41.5% in RMSE.

The Effect of Freeze and Thaw for the Stabilized Soil Bottom Liners in the Landfill (폐기물 매립지 바닥층의 고화토 포설시 동결/융해 현상에 관한 연구)

  • Lee, Song;Lee, Jai-Young;Kim, Heung-Suck
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.179-189
    • /
    • 2000
  • The purpose of this research is to complement the existing researches on landfill bottom liners behavior during the periods of freeze and thaw. Landfill-related researches have been typically focused on small-scale soil samples that are often compacted under conditions different from those used in the field. Although these tests have been invaluable in clarifying the problem of freeze and thaw, extending the results of such experimental studies to prototype landfills are questionable. In this investigation, the author utilized a large scale laboratory simulation allowing inclusion of the field depth of the cover systems, layered soil profiles, rainfall simulation, a cold climate and boundary conditions similar to those encountered in the landfill. The soil materials were stabilized soils (mixed clays, cements, and minerals) instead of clays. The bottom liners are made up of drainage layer (30 cm), stabilized layer (75 cm), and leach collection layer (60 cm). The stabilized layers are made up of supporting layer (45 cm) and low permeable layer (30 cm) - consisting of $P_A\; and\; P_B$ layer. As a results, depths of penetration increased by about 2~5 more centimeters at rainfall simulated designs than those at no rainfall simulated designs (that is design 3, design 5 and design 7) - it increased by about 20mm/day in the bottom liners and frost heaves also increased it by a few millimeters. Also, a few cracks appeared partly. According to these results, we can surmise that the compacted stabilized soil is more reliable than the compacted clay liners for construction of the landfill liners.

  • PDF

Study on the Insurance and Liability for Damage caused by Space Objects (우주사고와 손해배상)

  • Kim, Sun-Ihee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.19 no.1
    • /
    • pp.9-35
    • /
    • 2004
  • A launching State shall be absolutely liable to pay compensation for damage caused by its space object on the surface of the earth or to aircraft in flight. The compensation which the launching State shall be liable to pay for damage under "the Convention on International Liability for Damage caused by Space Objects" shall be determined in accordance with international law and the principles of justice and equity, in order to provide such reparation in respect of the damage as will restore the person, natural or juridical, State or international organisation on whose behalf the claim is presented to the condition which would have existed if the damage had not occurred. In the event of damage being caused elsewhere than on the surface of the earth to a space object of one launching State or to persons or property on board such a space object by a space object of another launching State, and of damage thereby being caused to a third State or to its natural or juridical persons, the first two States shall be jointly and severally liable to the third State, to the extent indicated by the following: If the damage has been caused to the third State on the surface of the earth or to aircraft in flight, their liability to the third State shall be absolute; If the damage has been caused to a space object of the third State or to persons or property on board that space object elsewhere than on the surface of the earth, their liability to the third State shall be based on the fault of either of the first two States or on the fault of persons for whom either is responsible. The Insurance requirements are satisfied for a launch or return authorised by a launch permit if the holder of the permit or authorisation is insured against any liability that the holder might incur to pay compensation for any damage to third parties that the launch or return causes; and the Commonwealth is insured against any liability that Commonwealth might incur, under the Liability Convention or otherwise under international law, to pay compensation for such damage. The liability for Damage caused by Space Objects should be regulated in detail in Korea.

  • PDF

Studies on the Bare Rock-slope Conservation Measures (I) -Conservation and Revegetation by Parthenocissus spp.- (암벽면녹화공법개발(岩壁面綠化工法開發)에 관(關)한 연구(硏究)(I) - 담쟁이덩굴류(類)의 이용성개발(利用性開發) -)

  • Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.37 no.1
    • /
    • pp.1-16
    • /
    • 1978
  • The study describes on the identification and morphological characteristics of each species, ecological characteristics and propagation techniques, and developing utilization measures of the Parthenocissus plants for environment conservation and revegetation of the babe rock-slopes. The following species and varieties are disscussed in this study; Parthenocissus tricuspidata (S. et Z.) Planch. var. veitchii Rehd. var. lowii Rehd. var. pupurea Hort. Parthenocissus quiquefolia (L.) Planch. var. engelmanni Rehd. var. saint-pauli Rehd. var. hirsuta Planch. Parthenocissus henryana Diels et Gilg. Parthenocissus thomsoni Planch. Parthenocissus heptaphylla Small. Parthenocissus inserta (Kern.) K. Fritsch. Parthenocissus laetevirens Rehd. Parthenocissus himalayana Planch. These are, in general, all vigorous self-clinging climbers that will quickly cover a wall and bare rock surfaces with a dense network of branch growths and beautiful green leaves which change to shades of scarlet and crimson before they fall in Autumn. Parthenocissus tricuspidata out of 8 species in the genus Parthenocissus is the most useful plant for the environment conservation including the bare rock-slope revegetation and for the production of food and shelter for wildlifes. This native of Korea clings by means of small rootlike holdfasts (adhesive discs) and holds (tendrils) to stone work or any other solid support, tenaciously.

  • PDF

Shipborne Mobile LiDAR(Light Detection and Ranging) System for the Monitoring of Coastal Changes (해안지형 모니터링을 위한 해상모바일라이다 지형 측정 시스템 구축)

  • Kim, ChangHwan;Kim, HyunWook;Kang, GilMo;Kim, GiYoung;Kim, WonHyuck;Park, ChanHong;Do, JongDae;Lee, MyoungHoon;Choi, SoonYoung;Park, HyeonYeong
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.281-290
    • /
    • 2016
  • Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land. Regular monitoring of coastal changes is essential at key locations with such volatility. But the survey method of terrestial LiDAR(Light Detection and Ranging) system has much time consuming and many restrictions. For effective monitoring coastal changes, KIOST(Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system, installed in a research vessel, comprised a land based LiDAR(RIEGL LMS-420i), an IMU(MAGUS Inertial+), a RTKGNSS(LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land based LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. We conducted test measurements in the Anmok-Songjung beach around the Gangneung port. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

Debris flow characteristics and sabo dam function in urban steep slopes (도심지 급경사지에서 토석류 범람 특성 및 사방댐 기능)

  • Kim, Yeonjoong;Kim, Taewoo;Kim, Dongkyum;Yoon, Jongsung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.627-636
    • /
    • 2020
  • Debris flow disasters primarily occur in mountainous terrains far from cities. As such, they have been underestimated to cause relatively less damage compared with other natural disasters. However, owing to urbanization, several residential areas and major facilities have been built in mountainous regions, and the frequency of debris flow disasters is steadily increasing owing to the increase in rainfall with environmental and climate changes. Thus, the risk of debris flow is on the rise. However, only a few studies have explored the characteristics of flooding and reduction measures for debris flow in areas designated as steep slopes. In this regard, it is necessary to conduct research on securing independent disaster prevention technology, suitable for the environment in South Korea and reflective of the topographical characteristics thereof, and update and improve disaster prevention information. Accordingly, this study aimed to calculate the amount of debris flow, depending on disaster prevention performance targets for regions designated as steep slopes in South Korea, and develop an independent model to not only evaluate the impact of debris flow but also identify debris barriers that are optimal for mitigating damage. To validate the reliability of the two-dimensional debris flow model developed for the evaluation of debris barriers, the model's performance was compared with that of the hydraulic model. Furthermore, a 2-D debris model was constructed in consideration of the regional characteristics around the steep slopes to analyze the flow characteristics of the debris that directly reaches the damaged area. The flow characteristics of the debris delivered downstream were further analyzed, depending on the specifications (height) and installation locations of the debris barriers employed to reduce the damage. The experimental results showed that the reliability of the developed model is satisfactory; further, this study confirmed significant performance degradation of debris barriers in areas where the barriers were installed at a slope of 20° or more, which is the slope at which debris flows occur.