• Title/Summary/Keyword: 건설리프트

Search Result 33, Processing Time 0.016 seconds

A Decision-Making Model of Integrated Vertical and Horizontal Move Plan for Finishing Material in Righ-Rise Building Construction (고층건물공사 마감자재의 수직$\cdot$수평이동계획이 통합된 의사결정모델)

  • Ahn Byung-Ju;Kim Jae-Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.2 no.2 s.6
    • /
    • pp.47-58
    • /
    • 2001
  • Of all the site logistics technologies in high-rise building construction, both vertical and horizontal move plan, are the most imperative factors. And the horizontal plan follows lift-up plan as of the vertical plan. However though it may be, temporary lifts on site are numbered by heuristic formulas. The quantity of finishing material cannot be converted into lift-up load per finishing material. The lift-up plan cannot be evaluated the feasibility for finishing material move plan by a reasonable evaluation methodology. The horizontal plan is far from the vertical one. And the information as an input data for the horizontal plan is devoid of package unit size, length, and volume per finishing material. These can hardly result in reasonable and detail decision on how much to use temporary lifts, how long to use these, and where to deposit each finishing material. Therefore, this study is to suggest a decision-making model that can integrate vertical and horizontal material move plan in high-rise building construction and make a decision the plans systematically. And the study is to explain the concept, methodology, and contents of the model applied to a virtual project, named as MT 130 (Millennium Tower 130). By the model, the planner can shift his/her thinking framework on site logistics management products-oriented Into process-oriented. He/she can manage a project by the framework as system thinking, evaluate the feasibility of a lift-up plan, and decide the horizontal plan integrated with the lift-up.

  • PDF

A Study on the Regeneration Efficiency of the Electric Forklift Using the Variable Hydraulic Motor (가변 유압모터를 이용한 전동지게차 리프트회생 효율에 관한 연구)

  • Park, Yong Soo;Yu, Ying-Xiao;Yun, Jin Su;Do, Tri Cuong;Han, Sung Min;Shin, Jung Woo;Yu, Choong Mok;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.26-32
    • /
    • 2020
  • In modern society, the energy-saving problem of industrial vehicles is economically and environmentally critical. Energy savings using the potential energy of forklifts are one of the viable solutions to resolving this problem. The basic concept of this study is to operate the hydraulic motor and recharge the battery using the flow rate from the cylinder when loading heavy objects and lowering the fork. To save energy, the torque and rotational speed of the generator should be optimized according to the load and descent speed to increase efficiency. To this end, we propose a system that optimizes energy saving efficiency by controlling the swashplate angle of the variable hydraulic motor through the GA(Genetic-Algorithm). The results were verified by building and comparing fixed motor models and variable motor models using the AMEsim. The results of the study show that the proposed optimized swashplate angle increases the energy saving efficiency by approximately 6%-8%, depending on the working conditions.

An Analysis of Bed Change Characteristics by Bed Protection Work (바닥보호공 설치에 따른 하상변동 특성 분석)

  • Son, Ah Long;Kim, Byung Hyun;Moon, Bo Ram;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.821-834
    • /
    • 2015
  • This study presents the analysis of flow and bed change characteristics considering bed protection work built on the immediate downstream of weir to protect river bed from scouring. The study area is 37km reach from Hyunpoong station to Masuwon station including Hapcheon- Changryoung multi-function weir in the Nakdong river. CCHE2D model is calibrated and validated for evaluating the flow and bed change characteristics during Typhoon Kompasu in 2010. Three simulation conditions are set up: Case 1 is a natural channel without installation of weir. Case 2 involves an installation of weir in the natural channel. Case 3 involves an installation of weir with bed protection in the natural channel. Flood frequency (50, 100 and 200yr) is applied to each scenario to analyze the effects of bed protection work. While the sediment rate is increased in the downstream of fixed gate and sluice-type gate, river bed scouring rate is increased in the downstream of lift-type gate in Case 2 comparing with the results of Case 1. The river bed scouring is not occurred in the immediate downstream of weir (~30m) due to the effect of bed protection, but larger amount of sediment is occurred in the downstream of weir (60m~) which the bed protection is not installed comparing with the results Case 1. Through the results of simulation considering bed protection work, this study would be helpful to expect bed change and operate the weir as well as manage.