• Title/Summary/Keyword: 건설기술인

Search Result 8,783, Processing Time 0.037 seconds

Analysis of Failure Behavior of Piles Embedded in Liquefied Soil Deposits (액상화 지반에 근입된 말뚝의 파괴거동 분석)

  • Cho, Chong-Suck;Han, Jin-Tae;Hwang, Jae-Ik;Park, Young-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.123-131
    • /
    • 2006
  • Liquefaction-induced lateral spreading has been the most extensive damage to pile foundations during earthquakes. Several cases of pile failures were reported despite the fact that a large margin of safety factor was employed in their design. In this study, 1-g shaking table tests were performed in order to analyze the failure behavior of piles embedded in liquefied soil deposits by buckling instability. As a result, it can be concluded that the pile subjected to excessive axial loads $(near\;P_{cr})$ can fail easily by buckling instability during liquefaction. When lateral spreading took place in sloping grounds, it was found that lateral loading due to lateral spreading increased lateral deflection of pile and reduced the buckling load. In addition, from the buckling shape of pile, difference between Euler's buckling and pile buckling vat observed. In the case of pile buckling, hinge formed at the middle point of the pile, not at the bottom. And in sloping grounds, location of hinge formation got lower compared with level ground because of the soil movements.

Evaluation of CPTu Cone Factors for Busan Clay Using Pore Pressure Ratio (간극수압비를 이용한 부산점토의 CPTu 콘계수 추정)

  • Hong, Sung-Jin;Lee, Moon-Joo;Kim, Tai-Jun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.77-88
    • /
    • 2009
  • Cone factors, $N_{kt}$, $N_{ke}$ and $N_{{\Delta}u}$, for estimating undrained shear strength of Busan clay are evaluated in this study. For this, CPTu and field vane tests are performed for clay layers at two sites, Busan new-port and Noksan, and also $CK_0U$ triaxial tests with undisturbed samples taken from the same site are carried out. From experimental results, it is observed that the undrained shear strengths of clay increases with depth, and the undrained shear strength obtained from triaxial tests is 1.5 times higher than one obtained from vane tests. The normalized undrained shear strengths of Busan clay from triaxial and vane shear tests are $0.26{\sim}0.44$ and $0.20{\sim}0.23$, respectively. In CPTu results, cone tip resistance ($q_c$) and pore pressure ($u_2$) linearly increase with depth, and the pore pressure ratio ($B_q$) of Busan clay is within the range of $0.3{\sim}1.0$. The cone factors, which are determined by comparing the CPTu results with $CK_0U$ triaxial and vane shear test results, are found to be $5{\sim}20$ and $10{\sim}35$, respectively. It is also observed that the cone factors are inversely proportional to the pore pressure ratio. From this, the prediction methods for evaluating the cone factors of Busan clay are developed.

Cone Resistivity Penetrometer for Detecting Thin-Layered Soils (협재층 탐지를 위한 선단비저항 콘)

  • Yoon, Hyung-Koo;Jung, Soon-Hyuck;Kim, Rae-Hyun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.15-25
    • /
    • 2010
  • The thin-layered sand seam in clay affects the soil behavior. Although the standard cone penetrometer (A: $10cm^2$) have been used to evaluate the thin-layered soil, the smaller diameter cone penetrometer have been commonly recommended because of the high resolution. The purpose of this study is the development and application of the Cone Resistivity Penetrometer (CRP), which detects qc, fs, and electrical resistivity at cone tip for the evaluation of thin layered soils. Two sizes of the CRP are developed for the laboratory and field test. The projected areas of CRP for the laboratory and field tests are $0.78cm^2$ (d: 1.0 cm) and $1.76cm^2$ (d: 1.5 cm), repectively. The length of friction sleeve is designed in consideration of ratio of the projected area to the friction sleeve area. The application tests are carried out by using the artificially prepared thin-layered soils in the laboratory. In addition, the field tests are conducted at the depth of 6 to 15 m in Kwangyang. In the laboratory test, the measured electrical resistivity and cone tip resistance detect the soil layers. Moreover, in the field test the CRP investigates the three thin-layered soils. This study suggests that the CRP may be a useful tool for detecting thin-layered in soft soils.

Load-Settlement Behavior of Rock-socketed Drilled Shafts by Bi-directional Pile Load Test (양방향 말뚝선단재하시험에 의한 암반근입 현장타설말뚝의 하중-침하거동 분석)

  • Seol, Hoon-Il;Jeong, Sang-Seom;Han, Keun-Taek;Kim, Jae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.61-70
    • /
    • 2008
  • Load settlement behaviors and load transfer characteristics of rock-socketed pile subjected bi-directional load at pile tip were investigated using bi-directional pile load tests (BD PLT) performed on ten large-diameter drilled shafts at four sites. Based on test results, additional pile-toe displacement ($w_{bs}$) by coupled soil resistance was analyzed, and thus equivalent top loaded load-settlement curve of pile subjected bi-directional load was proposed by taking into account the coupled soil resistance. Through comparisons with field case studies, it is found that for test piles there exists effect of coupled soil resistance, which is represented by wbs, and thus an equivalent curve obtained by existing uncoupled methods can overestimate bearing capacity of piles by BD PLT. On the other hand, the analysis by the proposed method with soil coupling effect has a considerably larger settlement when compared with the results by uncoupled load transfer method and estimates reasonable load-settlement behaviors of test piles. In case of pile socketed in high strength rocks, however, effects of coupled soil resistance can be neglected.

Strength Anisotropy through Artificial Weak Plane of Mudstone (인공연약면을 따른 이암의 강도이방성에 관한 연구)

  • Lee, Young-Huy;Jeong, Ghang-Bok
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.111-120
    • /
    • 2008
  • The characteristic of induced anisotropy is investigated in this study for the Pohang mudstone involving the cut plane discontinuity. The uniaxial and triaxial compression tests are performed for anisotropic rocks with artificial joint to look into anisotropic strength characteristics. Both the uniaxial compressive strength and triaxial compressive strength show the lowest value at the angle of cut plane, ${\beta}=30^{\circ}$ and the shoulder type of anisotropy is obtained. Anisotropy ratio (Rc) in uniaxial compression measures 9.0, whereas Rc=1.29-1.98 in triaxial compression is appeared. A series of analyses are made with the test results to derive the suitable parameter values when it is applied to the Ramamurthy (1985) failure criterion. The result of uniaxial compression test is analyzed by introducing the n-index into Ramamurthy failure criterion. The result shows that, n=l is suitable for ${\beta}=0^{\circ}{\sim}30^{\circ}$ and n=3 is suitable for ${\beta}=30^{\circ}{\sim}90^{\circ}$. To analyze the result of triaxial compression test by Ramamurthy failure criterion, anisotropy ratio in uniaxial compression test is added to Ramamurthy's equation and material constants are estimated by modified Ramamurthy's equation. When these values are applied back to Ramamurthy failure criterion, the predicted values are well fitted to the test results. And strength anisotropy for failure criteria of Jaeger (1960), McLamore & Gray (1967) and Hoek & Brown (1980) are also investigated.

Analysis on the Rigid Connections of the Drilled Shaft with the Cap for Multiple Pile Foundations (현장타설말뚝을 적용한 다주식 기초에서 말뚝과 캡의 강결합에 대한 분석)

  • Cho, Sung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.61-73
    • /
    • 2008
  • Piles of a bridge pier are connected with the column through the pile cap (footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. Connection methods between pile heads and the pile cap are divided into two groups : rigid connections and hinge connections. Domestic design code has been specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However, some specifications prescribe that conservative results through investigations of both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which has high-quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) is unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the large diameter drilled shaft and the pile cap for Incheon Bridge which will be the longest bridge of Korea were investigated through the full modeling for rigid connection conditions.

Method of Estimating Pile Load-displacement Curve Using Bi-directional Load Test (양방향 재하시험을 이용한 말뚝의 하중-변위곡선 추정방법)

  • Kwon Oh-Sung;Choi Yong-Kyu;Kwon Oh-Kyun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2006
  • For the last decade, the hi-directional testing method has been advantageous over the conventional pile load testing method in many aspects. However, because the hi-directional test uses a loading mechanism entirely different from that of the conventional pile load testing method, many investigators and practicing engineers have been concerned that the hi-directional test would give inaccurate results, especially about the pile head settlement behavior. Therefore, a hi-directional load test and the conventional top-down load test were executed on 1.5 m diameter cast-in-situ concrete piles at the same time and site. Strain gauges were placed on the piles. The two tests gave similar load transfer curves at various depth of piles. However, the top-down equivalent curve constructed from the hi-directional load test results predicted the pile head settlement under the pile design load to be about one half of that predicted by the conventional top-down load test. To improve the prediction accuracy of the top-down equivalent curve, a simple method that accounts for the pile compression is proposed. It was also shown that the strain gauge measurement data from the hi-directional load test could reproduce almost the same top-down curve.

Development and Application of Penetration Type Field Shear Wave Apparatus (관입형 현장 전단파 측정장치의 개발 및 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Kim, Hyung-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.67-76
    • /
    • 2006
  • The reasonable assessment of the shear stiffness of a dredged soft ground and soft clay is difficult due to the soil disturbance. This study addresses the development and application of a new in-situ shear wave measuring apparatus (field velocity probe: FVP), which overcomes several of the limitations of conventional methods. Design concerns of this new apparatus include the disturbance of soils, cross-talking between transducers, electromagnetic coupling between cables, self acoustic insulation, the constant travel distance of S-wave, the rotation of the transducer, directly transmitted wave through a frame from transducer to transducer, and protection of the transducer and the cable. These concerns are effectively eliminated by continuous improvements through performing field and laboratory tests. The shear wave velocity of the FVP is simply calculated, without any inversion process, by using the travel distance and the first arrival time. The developed FVP Is tested in soil up to 30m in depth. The experimental results show that the FVP can produce every detailed shear wave velocity profiles in sand and clay layers. In addition, the shear wave velocity at the tested site correlates well with the cone tip resistance. This study suggests that the FVP may be an effective technique for measuring the shear wave velocity in the field to assess dynamic soil properties in soft ground.

Comparison on the Performance of Soil Improvement in Thick Soft Ground Using Single-Core and Double-Core PBD (단일 및 이중 코어 PBD에 의한 대심도 연약지반 개량 효과에 관한 비교연구)

  • Yang, Jeong-Hun;Hong, Sung-Jin;Kim, Hyung-Sub;Lee, Woo-Jin;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.33-45
    • /
    • 2009
  • The conventional single-core PBDs have been widely used in order to accelerate consolidation settlement of soft grounds. When using the single-core PBD in a thick clay deposit, a delay of consolidation may occur due to high confining pressure in the thick deposit and necking of drains. This study is to compare the performances of soil improvement by the single-core and double-core PBD installed at a site in Busan New Port which exhibits approximately a 40m-thick clay layer. An in-situ test program was performed at the test site where a set of the double-core PBDs and single-core PBDs were installed to compare the efficiency of each drain. In addition, the discharge capacity of each PBD has been measured using the modified Delft Test. A series of laboratory tests for estimating in-situ soil properties have also been performed in order to obtain input parameters for a numerical program ILLICON. The discharge capacity of the double-core PBD is higher than that of the single-core PBD in the modified Delft Test. However it is observed from the comparative in-situ test and numerical analysis that there is no difference in the performance of ground improvement between the two drain systems. This discrepancy comes from the fact that the amount of water released during consolidation in most common field conditions is much smaller than the capacity of even the single core PBD. And thus, considering actual field conditions, it can be concluded that the single-core PBD has enough discharge capacity even in the thick clay deposit such as this test site.

Simultaneous Removal of Cd and Cr(VI) in the Subsurface Using Permeable Reactive Barrier Filled with Fe-loaded Zeolite: Soil Box Experiment (Fe-loaded zeolite로 충진된 투수성 반응벽체를 이용한 지반 내 Cd과 Cr(VI)의 동시제거: 모형 토조 실험)

  • Rhee, Sung-Su;Lee, Seung-Hak;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.61-68
    • /
    • 2010
  • A pilot-scale model test was performed to estimate the availability of new material, Fe-loaded zeolite, as the filling material in permeable reactive barrier (PRB) against the contaminated groundwater with both Cd and Cr(VI). Aquifer was simulated by filling up a large scale soil tank with sands, and mobilizing the water flow by the head difference of water level in both ends of the tank. Then, the mixture of concentrated Cd and Cr(VI) solution was injected into the aquifer to form a contaminant plume, and its behavior through Fe-loaded zeolite barrier was monitored. The test results showed that Fe-loaded zeolite barrier successfully treated the contaminant plume containing both Cd and Cr(VI) and that the immobilized contaminants in the barrier were not desorbed or released. The results indicated that the Fe-loaded zeolite could be a promising material in PRBs against the multiple contaminants with different ionic forms like Cr(VI) and Cd.