• Title/Summary/Keyword: 건물에너지

Search Result 1,453, Processing Time 0.022 seconds

Effect of Planting Date and Hybrid on the Agronomic Characteristics, Forage Production and Feed Value of Corn for Silage (파종시기 및 품종이 사일리지용 옥수수의 생육특성, 사초생산성 및 사료가치에 미치는 영향)

  • Bae, Myeong Jin;Chung, Sung Heon;Kim, Jong Duk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.1
    • /
    • pp.54-60
    • /
    • 2022
  • The planting date of corn for silage has been delayed because of spring drought and double cropping system in Korea. This experiment was conducted to evaluate agronomic characteristics, forage production and feed value of corn at April and May in 2019. Experimental design was a split-plot with three replications. Planting dates (12 April and 10 May) were designated to the main plot, and corn hybrids ('P0928', 'P1543' and 'P2088') to the subplot. The silking days of the early planting date (12 April) was 79 days and that of the late planting date (10 May) was 66 days (p<0.0001), however, there were no significant differences among the corn hybrids. Ear height of the late planting date was higher than that of the early planting (p<0.05), while there were no significant differences in plant height of corn. Insect resistance at the early planting was lower than that of late planting (p<0.05), however, lodging resistance was no significant difference at planting date. The rice black streaked virus (RBSDV) infection of early planting was 3.7% and that of late planting was 0.3% (p<0.001). Dry matter (DM) contents of stover, ear and whole plant had significant difference at planting date (p<0.05). And differences in ear percentages were observed among the corn hybrids (p<0.01). And ear percentages of early maturing corn ('P0928') was higher than for other hybrids. Ear percentage at the early planting date was higher than that at the late planting date (p<0.01). DM and total digestible nutrients (TDN) yields had significant difference at planting date, however, there were no significant differences among the corn hybrids. DM and TDN yields at the late planting (21,678 kg/ha and 14,878 kg/ha) were higher than those of the early planting (13,732 kg/ha and 9,830 kg/ha). Crude protein content at the early planting date was higher than that of the late planting. Acid detergent fiber content of the late planting was lower than that of the early planting date (p<0.01), while there were no significant neutral detergent fiber content difference among the corn tested. Calculated net energy for lactation (NEL) and TDN at the early planting were higher than those of at the late planting (p<0.01). Results of this our study indicate that the late planting date (May) is better than early planting date (April) in forage yield and feed value of corn. Therefore, the delay of planting date by May was more suitable for use in cropping system.

Behavior Analysis of Concrete Structure under Blast Loading : (II) Blast Loading Response of Ultra High Strength Concrete and Reactive Powder Concrete Slabs (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (II) 초고강도 콘크리트 및 RPC 슬래브의 실험결과)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Cho, Yun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.565-575
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast load is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, normal strength concrete structures require higher strength to improve their resistance against impact and blast loads. Therefore, a new material with high-energy absorption capacity and high resistance to damage is needed for blast resistance design. Recently, Ultra High Strength Concrete(UHSC) and Reactive Powder Concrete(RPC) have been actively developed to significantly improve concrete strength. UHSC and RPC, can improve concrete strength, reduce member size and weight, and improve workability. High strength concrete are used to improve earthquake resistance and increase height and bridge span. Also, UHSC and RPC, can be implemented for blast resistance design of infrastructure susceptible to terror or impact such as 9.11 terror attack. Therefore, in this study, the blast tests are performed to investigate the behavior of UHSC and RPC slabs under blast loading. Blast wave characteristics including incident and reflected pressures as well as maximum and residual displacements and strains in steel and concrete surface are measured. Also, blast damages and failure modes were recorded for each specimen. From these tests, UHSC and RPC have shown to better blast explosions resistance compare to normal strength concrete.

Effects of Fermented Diets Including Liquid By-products on Nutrient Digestibility and Nitrogen Balance in Growing Pigs (착즙부산물을 이용한 발효사료가 육성돈의 영양소 소화율 및 질소균형에 미치는 영향)

  • Lee, Je-Hyun;Jung, Hyun-Jung;Kim, Dong-Woon;Lee, Sung-Dae;Kim, Sang-Ho;Kim, In-Cheul;Kim, In-Ho;Ohh, Sang-Jip;Cho, Sung-Back
    • Journal of Animal Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.81-92
    • /
    • 2010
  • This study was conducted to evaluate the effects of fermented diets including liquid by-products on nutrient digestibility and nitrogen balance in growing pigs. Treatments were 1) CON (basal diet), 2) F (fermented diet with basal diet), 3) KF (fermented diet with basal diet including 30% kale pomace), 4) AF (fermented diet with basal diet including 30% angelica keiskei pomace), 5) CF (fermented diet with basal diet including 30% carrot pomace) and 6) OF (fermented diet with basal diet including 30% grape pomace). A total of 24 pigs (41.74kg average initial body weight, Landrace $\times$ Yorkshire $\times$ Duroc), were assigned to 6 treatments, 4 replicates and 1 pig per metabolic cage in a randomized complete block (RCB) design. Pigs were housed in $0.5\times1.3m$ metabolic cage in a 17d digestibility trial. During the entire experimental period, Digestibility of dry matter (p<0.05) of treatment CON, F and CF were higher than other treatments. In crude protein digestibility, treatment F was higher than treatment AF and GF (p<0.05). Treatment GF showed the lowest digestibility of crude fiber among all treatments (p<0.05). In ether extract digestibility, treatment AF and CF showed higher than other treatments (p<0.05) except KF treatment. CF treatment showed the best digestibility of ash among all treatments (p<0.05). Whereas, For Ca and P digestibility, CF and OF treatments were improved than other treatments (p<0.05). Energy digestibility (p<0.05) of CON, F and CF treatments were higher than KF, AF and GF treatments. In total essential amino acid digestibility, F treatment was improved than AF, CF and GF treatments (p<0.05). In total non-essential amino acid digestibility, F treatment was higher than CON, AF and GF treatments (p<0.05). In total amino acid digestibility, F treatment was higher than AF and CF treatments (p<0.05) and GF treatment showed the lowest digestibility (p<0.05). In fecal nitrogen excretion ratio, GF treatment was greatest among all treatments (p<0.05) and F treatment was decreased than other treatments (p<0.05). In urinary nitrogen excretion ratio, CON and GF treatments showed the lowest among all treatments (p<0.05). In nitrogen retention ratio, CON treatment showed the high and KF treatment showed the lost among all treatments (p<0.05). Therefore, this experiment suggested that fermented diet could improve nutrient and amino acid digestibilities of growing pigs.