신경망방법은 공학, 경영 그리고 정보기술과 같이 다양한 분양에서 널리 사용되어지고 있다. 신경망방법은 기본적으로 예측, 제어, 식별과 같은 기능을 가지고 있는데, 본 논문에서는 신경망방법을 이용하여 C사의 모델 T의 히트펌프 전기부하를 예측하였다. 부하예측은 시스템을 더욱 효율적이고, 적절하게 만들기 위해 필요하다. 본 논문에서 사용된 히트펌프는 지열원 히트 펌프 시스템이다. 이 지열 히트 펌프의 부하는 사전에 미리 예측되어진 외기온도 및 건물 열부하에 따라 측정 학습된 전력 소비량으로 겨울에는 난방, 여름에는 냉방에 대한 전력 부하를 예측할 수 있다. 이 신경망방법은 신경망 학습 순서를 통해 부하 예측을 위해 히트펌프의 성능데이터를 필요로 한다. 이 부하 예측 인공지능망 방법으로 외기 온도별 건물 통합형 지열 히트 펌프 부하가 예측되어질 수 있다.
건물의 외부에 차양을 설치하는 것은 건물이 갖는 냉방부하를 줄일 수 있는 중요한 요인이 된다. 외부차양의 효율성은 차양의 형태, 크기, 태양의 경로, 건물의 방향등과 같은 요소에 의해 결정 지어진다. 그러나, 이러한 요소들이 서로 동적으로 상호 관련 되어 있기 때문에 외부차양에 의한 그림자 투영은 예측하기 힘들고, 따라서 냉방부하가 얼마만큼 감소되는지는 더욱더 예측이 어려워진다. 이 논문은 디자이너가 직접 외부차양을 컴퓨터 그래픽으로 디자인 함과 동시에 그림자 투영을 시각화 할 수 있는 프로그램 개발을 위한 연구이다.
바람은 건물 외벽에서의 압력차의 주요인의 하나이다. 바람에 의한 압력차를 정확히 예측할 수 있다는 것은 외벽에 있어서의 풍하중, 건물내로 투입되는 공기양의 설계치 결정, 그리고 건물을 사용하는 거주인의 병리학적 면에서 보다 중요한 것이다. 단열재로 잘 설계된 건물에서는 투입되는 공기에 의한 열부하가 전체 열부하의 30 ~ 50%도 될 수 있으며, 화재시 화염과 연기의 확산에도 중요한 문제이다. 20층 아파트를 사용해서 실물실험을 한 후 측정된 여러가지 값을 예측할 수 있는 방법을 고찰했으며 본 연구에서는 건물에서 바람에 기인되는 압력차를 예측하는 modeling과 Simulation에 있어서의 고찰할 여러가지 재원을 제시했다. 또한 Model을 이용한 실험결과는 Simulation에 있어서 적합한 조건을 충족시키면 풍동을 사용하여 바람에 기인하는 압력차를 예측할 수 있다는 것이 증명되었다.
본 연구에서는 난방설비 제어에 필요한 난방부하를 건물 특성계수를 사용하여 예측하는 방법을 제안하였고, 난방부하에 주된 영향을 미치는 시간별 온도와 일사량을 예측하는 방법을 제안하였다. 온도와 일사량은 기상청에서 예보되는 정보로부터 퍼지이론을 이용하여 예측하였고, 난방부하 예측을 위한 건물 특성계수는 EnergyPlus로부터 도출하였다. 본 연구에서 제안된 방법으로 얻어진 난방부하는 EnergyPlus의 결과와 잘 일치하였으며, 예측된 온도와 일사를 이용하여 예측한 난방부하의 변화 양상은 실측 기상데이터를 사용한 결과와 유사하였다.
최근 문제가 되고 있는 전력 문제를 효율적으로 관리하기 위해 건물 에너지 관리 시스템이 주목받고 있다. 건물 에너지 관리 시스템은 관리자가 건물의 전력 소비량을 효율적으로 관리할 수 있도록 전력 소비량에 대한 모니터링 기능을 제공하는 시스템이다. 기존의 건물 에너지 관리 시스템은 과거, 현재, 미래의 전력 소비량을 통계 자료로 제공하고, 이를 토대로 전력 과부하 발생을 방지하였다. 그렇지만 기존의 시스템에 반응형 웹 디자인을 적용한 사례를 찾아보기 힘들며 온도 변화에 따른 전력 소비량을 고려하지 않기 때문에 정확한 부하 예측을 하기 어렵다는 단점이 있다. 본 논문에서 제안한 건물 에너지 관리 시스템은 반응형 웹 디자인을 적용하여 여러 모바일 기기로도 편리하고 효율적으로 건물을 관리할 수 있게 하였다. 또한, 건물에서 유지되어야 할 목표 온도, 건물 전력 소비량에 대한 과거 데이터와 기상청에서 제공하는 데이터를 통하여 부하 예측을 하고, 다양한 전력 소비량 통계 자료를 제공한다. 이를 통해 관리자는 효율적인 건물 에너지 관리를 할 수 있다.
최근 산업발전에 따라 야기되는 문제점 중 전력수요의 증가에 의한 피해가 증대되고 있다. 여름철 하계부하등에 의한 과부하는 가정이나 대형건물의 정전을 발생시키거나 공장의 기계를 파손시키기도 하기 때문에 이를 미연에 방지할 수 있는 부하예측기법이 점차로 강조되고 있는 현실이다. 이에 본 논문에서는 초(sec)단위의 순시부하예측/제어를 위한 새로운 방법과 퍼지제어기를 제안한다. 제안한 순시부하예측/제어는 크게 과거의 데이터를 가지고 일정시간 후의 값을 예측하는 예측부와 이 결과의 신뢰도를 높여주기 위한 퍼지제어기로나눌 수 있다. 예측부는 SOFM (Self-Organizing Feature Map) 신경망을 이용하며, 예측된 출력값을 퍼지제어기의 입력으로 사용한다.
본 연구는 건물에너지 효율 향상을 위한 목적으로 기상데이터 변화에 따른 건물 냉 난방부하량을 예측하고 결과를 비교 분석한 것으로, 연구 성과는 다음과 같다. 1)기상청에서 입수데이터를 평가툴인 ESP-r에 활용할 수 있도록 항목별 기상데이터를 개발하였다. 표준기상 데이터의 외기온도, 습도, 풍속은 대부분의 경우 기상청데이터 보다 크거나 높았다. 수평면전일사량은 기상청데이터가 높았고, 직달일사량은 겨울철에는 표준기상데이터가, 여름철에는 기상청데이터가 많은 것으로 나타났다. 2)대학교 캠퍼스 내에 신축된 후생복지관을 대상으로 한 시뮬레이션 결과, 최대난방부하의 경우 표준년도, 2006년, 2009년이 비슷한 반면 2007년은 표준년도 대비 81%, 2008년은 96% 수준이었고, 연간난방부하는 2006년, 2008년의 순으로 난방수요가 많았다. 한편, 냉방부하의 경우에는, 상대적으로 최대냉방부하가 큰 2007년, 2009년의 연간 냉방부하보다 최대냉방부하가 가장 적은 2008년의 연간냉방부하가 더 큰 결과를 보였다. 3)냉 난방기기의 상당시간가동률을 평가한 결과, 표준년도의 최대부하대비 상당시간가동률은 2006~2009년이 표준년도에 비해 대부분 가동률이 낮았다.
The energy conservation is one of the most important issues in recent years. Especially, the energy conservation through improved control strategies is one of the most highly possible area to be implemented in the near future. The energy conservation of the ice storage system can be accomplished through the improved control strategies. A real time building load prediction algorithm was developed. The expected highest and the lowest outdoor temperature of the next day were used to estimate the next day outdoor temperature profile. The measured dry bulb temperature and the measured building load were used to estimate system parameters by using the on-line weighted recursive least square method. The estimated hourly outdoor temperatures and the estimated hourly system parameters were used to predict the next day hourly building loads. In order to see the effectiveness of the building load prediction algorithm, two different types of building models were selected and analysed. The simulation results show less than 1% in error for the prediction of the next day building loads. Therefore, this algorithm may successfully be used for the development of improved control algorithms of the ice storage system.
New methodology is proposed to predict the hourly cooling load of the next day using maximum/minimum temperature and building area. The maximum and minimum temperature are obtained from forecasted weather data. The cooling load parameters related to building area are set through a database provided from reference buildings. To validate the performance of the proposed method, the predicted cooling loads in hourly bases are calculated and compared with the measured data. The predicted results show fairly good agreement with the measured data for benchmarking building.
지역난방 시스템의 최적 스케쥴 제어를 위해서는 난방부하 예측이 필요하다. 공동주택의 난방부하는 복잡한 변수들의 영향을 받기 때문에 손쉬운 난방부하 예측을 위해 사용하기 쉬우며 효용성 있는 예측방법의 개발이 필요하다. 본 연구에서는 익일의 시간별 난방부하를 예측하기 위해 단순화된 외기조건 예측방법과 부하 예측방법을 제안하였다. 난방부하 예측을 위해 건물설계서에서 쉽게 얻을 수 있는 간단한 사양과 예측된 온습도가 사용되었다. 제안된 방법의 타당성을 검증하기 위해 지역난방 시스템으로부터 시간별로 실측된 난방부하와 예측된 결과를 비교하였다. 예측된 외기조건은 실측된 값과 비교하여 변화양상이 잘 일치하였다. 예측된 난방부하와 측정된 난방부하를 비교한 결과, 시간별, 일별, 월별 모두 예측과 실측이 비교적 잘 일치하였으며, 난방기간 동안 월별 부하의 평균 오차는 약 4.68%로 비교적 작은 값을 가졌다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.