• Title/Summary/Keyword: 건물변화탐지

Search Result 45, Processing Time 0.021 seconds

Automatic Co-registration of Existing Building Models and Digital Image (건물 모델과 디지털 영상간의 자동정합 방법)

  • Jung, Jae-Wook;Sohn, Gun-Ho;Armenakis, Costas
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • With recent advancement of remote sensing technology, a variety of data acquisition over the same area is achievable. An automated co-registration of heterogeneous airborne images is a critical step for change detection. This paper describes an automatic method for co-registration between digital image and existing building model. Optimal building models for co-registration purpose are extracted as primitives from existing building model database. A set of homologous features between straight lines extracted from aerial digital image and model primitive are computed based on geometric similarity function. With obtained homologous features, EO parameter is recomputed using least square method. The result shows that die suggested method automatically co-register two data set in a reliable manner.

Estimation of Dynamic Properties Corresponding to Global Damage for Structural Health Monitoring of Residential Buildings (주거건물의 계측유지관리를 위한 전역적 손상에 따른 동적특성 예측)

  • Kim, Ji-Young;Cho, Ja-Ock;Park, Jae-Keun;Kim, Dae-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.200-204
    • /
    • 2009
  • 구조물의 건전도를 평가하기 위하여 계측된 데이터로부터 구조물의 동특성 변화를 분석하여 손상정도를 추정하는 방법이 많이 사용되고 있다. 최근, 다점 측정된 가속도 데이터로부터 구조물의 고유진동수 및 모드형상을 추출하고 이를 초기값과 비교하여 손상탐지를 실시함으로써 손상위치 및 손상정도를 추정하는 기법이 활발히 연구되고 있다. 그러나 이러한 방법을 실제 적용하기 위해서는 계측시스템 구축에 많은 비용이 소요되며, 손상탐지를 위한 해석과정이 복잡하기 때문에 실시간에 가깝게 유용한 정보를 거주자에게 제공하는데 한계가 있다. 따라서 본 연구에서는 실용적인 계측유지관리 시스템을 구축할 수 있도록 구조물의 손상도에 따른 동적특성의 변화를 사전에 예측하여 실제 계측된 동적특성에 대한 관리 한계치를 제공하는 방안을 제시하고자 한다.

  • PDF

Analysis of Building Characteristics and Temporal Changes of Fire Alarms (건물 특성과 시간적 변화가 소방시설관리시스템의 화재알람에 미치는 영향 분석 연구)

  • Lim, Gwanmuk;Ko, Seoltae;Kim, Yoosin;Park, Keon Chul
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.83-98
    • /
    • 2021
  • The purpose of this study to find the factors influencing the fire alarms using IoT firefighting facility management system data of Seoul Fire & Disaster Headquarters, and to present academic implications for establishing an effective prevention system of fire situation. As the number of high and complex buildings increases and former bulidings are advanced, the fire detection facilities that can quickly respond to emergency situations are also increasing. However, if the accuracy of the fire situation is incorrectly detected and the accuracy is lowered, the inconvenience of the residents increases and the reliability decreases. Therefore, it is necessary to improve accuracy of the system through efficient inspection and the internal environment investigation of buildings. The purpose of this study is to find out that false detection may occur due to building characteristics such as usage or time, and to aim of emphasizing the need for efficient system inspection and controlling the internal environment. As a result, it is found that the size(total area) of the building had the greatest effect on the fire alarms, and the fire alarms increased as private buildings, R-type receivers, and a large number of failure or shutoff days. In addition, factors that influencing fire alarms were different depending on the main usage of the building. In terms of time, it was found to follow people's daily patterns during weekdays(9 am to 6 pm), and each peaked around 10 am and 2 pm. This study was claimed that it is necessary to investigate the building environment that caused the fire alarms, along with the system internal inspection. Also, it propose additional recording of building environment data in real-time for follow-up research and system enhancement.

Designation for Change Detection of Building Objects in Urban Area in High-Resolution Satellite Image (고정밀 위성영상에서 도심지역 건물변화 탐지를 위한 중첩방법)

  • 이승희;박성모;이준환;김준철
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.319-328
    • /
    • 2003
  • The automatic analysis of high-resolution satellite image is important in cartography, surveillance, exploiting resources etc. However, the automatic analysis of high resolution satellite image in the urban area has lots of difficulty including a shadow, the difference of illumination with time, the complexity of image so that the present techniques are seemed to be impossible to resolve. This paper proposes a new way of change detection of building objects in urban area, in which the objects in digital vector map are designated and superimposed on the the high-resolution satellite image. The proposed way makes the buildings on the vector map parameterize, and searches them in the preprocessed high-resolution satellite image by using generalized Hough transform. The designated building objects are overlaid on the satellite image and the result can help to search the changes in building objects rapidly.

Change Detection of Building Objects in Urban Area by Using Transfer Learning (전이학습을 활용한 도시지역 건물객체의 변화탐지)

  • Mo, Jun-sang;Seong, Seon-kyeong;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1685-1695
    • /
    • 2021
  • To generate a deep learning model with high performance, a large training dataset should be required. However, it requires a lot of time and cost to generate a large training dataset in remote sensing. Therefore, the importance of transfer learning of deep learning model using a small dataset have been increased. In this paper, we performed transfer learning of trained model based on open datasets by using orthoimages and digital maps to detect changes of building objects in multitemporal orthoimages. For this, an initial training was performed on open dataset for change detection through the HRNet-v2 model, and transfer learning was performed on dataset by orthoimages and digital maps. To analyze the effect of transfer learning, change detection results of various deep learning models including deep learning model by transfer learning were evaluated at two test sites. In the experiments, results by transfer learning represented best accuracy, compared to those by other deep learning models. Therefore, it was confirmed that the problem of insufficient training dataset could be solved by using transfer learning, and the change detection algorithm could be effectively applied to various remote sensed imagery.

Change Detection Using Deep Learning Based Semantic Segmentation for Nuclear Activity Detection and Monitoring (핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지)

  • Song, Ahram;Lee, Changhui;Lee, Jinmin;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.991-1005
    • /
    • 2022
  • Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

Building Boundary Reconstruction from Airborne Lidar Data by Adaptive Convex Hull Algorithm (적응적 컨벡스헐 알고리즘을 이용한 항공라이다 데이터의 건물 경계 재구성)

  • Lee, Jeong-Ho;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.305-312
    • /
    • 2012
  • This paper aims at improving the accuracy and computational efficiency in reconstructing building boundaries from airborne Lidar points. We proposed an adaptive convex hull algorithm, which is a modified version of local convex hull algorithm in three ways. The candidate points for boundary are first selected to improve efficiency depending on their local density. Second, a searching-space is adjusted adaptively, based on raw data structure, to extract boundary points more robustly. Third, distance between two points and their IDs are utilized in detecting the seed points of inner boundary to distinguish between inner yards and inner holes due to errors or occlusions. The practicability of the approach were evaluated on two urban areas where various buildings exist. The proposed method showed less shape-dissimilarity(8.5%) and proved to be two times more efficient than the other method.

Semantic Building Segmentation Using the Combination of Improved DeepResUNet and Convolutional Block Attention Module (개선된 DeepResUNet과 컨볼루션 블록 어텐션 모듈의 결합을 이용한 의미론적 건물 분할)

  • Ye, Chul-Soo;Ahn, Young-Man;Baek, Tae-Woong;Kim, Kyung-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1091-1100
    • /
    • 2022
  • As deep learning technology advances and various high-resolution remote sensing images are available, interest in using deep learning technology and remote sensing big data to detect buildings and change in urban areas is increasing significantly. In this paper, for semantic building segmentation of high-resolution remote sensing images, we propose a new building segmentation model, Convolutional Block Attention Module (CBAM)-DRUNet that uses the DeepResUNet model, which has excellent performance in building segmentation, as the basic structure, improves the residual learning unit and combines a CBAM with the basic structure. In the performance evaluation using WHU dataset and INRIA dataset, the proposed building segmentation model showed excellent performance in terms of F1 score, accuracy and recall compared to ResUNet and DeepResUNet including UNet.

Urban Area Building Reconstruction Using High Resolution SAR Image (고해상도 SAR 영상을 이용한 도심지 건물 재구성)

  • Kang, Ah-Reum;Lee, Seung-Kuk;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.361-373
    • /
    • 2013
  • The monitoring of urban area, target detection and building reconstruction have been actively studied and investigated since high resolution X-band SAR images could be acquired by airborne and/or satellite SAR systems. This paper describes an efficient approach to reconstruct artificial structures (e.g. apartment, building and house) in urban area using high resolution X-band SAR images. Building footprint was first extracted from 1:25,000 digital topographic map and then a corner line of building was detected by an automatic detecting algorithm. With SAR amplitude images, an initial building height was calculated by the length of layover estimated using KS-test (Kolmogorov-Smirnov test) from the corner line. The interferometric SAR phases were simulated depending on SAR geometry and changable building heights ranging from -10 m to +10 m of the initial building height. With an interferogram from real SAR data set, the simulation results were compared using the method of the phase consistency. One of results can be finally defined as the reconstructed building height. The developed algorithm was applied to repeat-pass TerraSAR-X spotlight mode data set over an apartment complex in Daejeon city, Korea. The final building heights were validated against reference heights extracted from LiDAR DSM, with an RMSE (Root Mean Square Error) of about 1~2m.

Assessment of actual condition based on GIS for UHF band Propagation Interference caused by Apartment (GIS를 활용한 아파트 지역의 전파 장애 실태 평가)

  • 김진택;엄정섭
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.389-397
    • /
    • 2004
  • 본 연구는 GIS를 이용하여 아파트 단지의 UHF대역의 전파장애에 대한 예측모델을 제시한다. 전파예측모델은 기지국 및 중계기 위치설계와 전파음영지역 결정 등 무선네트워크 서비스에 결정적으로 활용된다 기존의 전파예측모델은 한국지형요소나 3차원 공간기술이 반영되지 않고 외국지형기반의 2차원적인 접근으로 개발되어 있다. 특히 많은 사람이 거주하는 아파트단지에 대해서는 고려가 되어 있지 않은 실정이며, 마치 아파트 단지가 일반 건물로 취급되어 전파환경 요소로 분류되지 않은 상태이다. 그리고 전파관리자가 기존 전파 예측모델을 이용한 무선네트워크 설계 및 운용등에 있어 정확한 의사결정지원에 어려움이 많다. 본 연구는 이러한 한계와 문제점을 해결하기 위해서 아파트 단지의 전파에 대한 영향을 3차원 공간밀집, 건물높이, 전파의 전송방향에 대한 건물배치등 3가지 요소로 분류하고 GIS 도구로 그 요소들을 분석하였다. 그 결과로 상관과 회귀분석등 정량적인 방법으로 평가하여 아파트 전파예측모델(GARP)을 개발하여 다음의 결과를 얻었다. 첫째, 아파트 단지가 UHF 대역의 전파에 대한 영향은 전파진행방향성이 57%, 공간밀집이 30%, 건물높이가 13%의 순으로 나타났다. 둘째, 본 연구에서 개발된 아파트 모델은 기존 모델에 비해 평균 6.3dBm, 최소 2.15 ~ 최대 12.48dBm의 개선 효과가 있다. 셋째, 급속히 확산되는 도시 개발에 3차원 공간상에서 전파예측모델을 시뮬레이션하여 전파의 영향을 예측할 수 있으며, 대단지 아파트 건설과 전파환경영향평가의 기초정보 수집에 활용될 수 있다. 본 연구는 GARP모델과 GIS 가시권 분석기능을 이용하여 실제 지형공간상에서 전파경로 손실치를 도시화함으로써 전파관리자가 무선서비스지역 설계, 전파음영지역 판단, 최적 중계기와 기지국 위치 선정에 기여할 것으로 판단된다.하지 않은 지역과 서로 다른 분광특성을 나타내므로 별도의 Segment를 형성하게 된다. 따라서 임상도의 경계선으로부터 획득된 Super-Object의 분광반사 값과 그 안에서 형성된 Sub-Object의 분광반사값의 차이를 이용하여 임상도의 갱신을 위한 변화지역을 탐지하였다.라서 획득한 시추코아에 대해서도 각 연구기관이 전 구간에 대해 동일하게 25%의 소유권을 가지고 있다. ?스굴 시추사업은 2008년까지 수행될 계획이며, 시추작업은 2005년까지 완료될 계획이다. 연구 진행과 관련하여, 공동연구의 명분을 높이고 분석의 효율성을 높이기 위해서 시료채취 및 기초자료 획득은 4개국의 연구원이 모여 공동으로 수행한 후의 결과물을 서로 공유하고, 자세한 전문분야 연구는 각 국의 대표기관이 독립적으로 수행하는 방식을 택하였다 ?스굴에 대한 제1차 시추작업은 2004년 3월 말에 실시하였다. 시추작업 결과, 약 80m의 시추 코아가 성공적으로 회수되어 현재 러시아 이르쿠츠크 지구화학연구소에 보관중이다. 이 시추코아는 2004년 8월 중순경에 4개국 연구팀원들에 의해 공동으로 기재된 후에 분할될 계획이다. 분할된 시료는 국내로 운반되어 다양한 전문분야별 연구에 이용될 것이다. 한편, 제2차 시추작업은 2004년 12월에서 2005년 2월 사이에 실시될 계획이다. 수백만년에 이르는 장기간에 걸쳐 지구환경변화 기록이 보존되어 있는 ?스굴호에 대한 시추사업은 후기 신생대 동안 유라시아 대륙 중부에서 일어난 지구환경 및 기후변화를 이해함과 동시에 이러한 변화가 육상생태계 및 지표지질환경에 미친 영향을 이해하는데 크게 기여할 것이다.lieve in safety with Radioactivity wastes control for harmony with Environment.d by the experiments under vari

  • PDF