• Title/Summary/Keyword: 거리-주파수 스펙트로그램

Search Result 5, Processing Time 0.019 seconds

Influence of the Shear Property of Seabed Appearing in the Striation Pattern of the Spectrogram of Ship-radiated Noise Measured in a Shallow Sea (천해에서 측정한 선박 방사소음 스펙트로그램의 줄무늬 패턴에 나타나는 해저면 전단성 영향)

  • Lee, Seong-Wook;Hahn, Joo-Young;Baek, Woon;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • This paper represents the results of interpretation on the cause of sign changing of the striation slopes appearing in the range-frequency domain spectrogram of ship-radiated noise measured in a shallow sea. Striation patterns and dispersion characteristics simulated from a numerical model based on mode theory at various seabed conditions show that the sign changing of the striation slopes appearing in measured signal is caused by the shear property of seabed. more specifically by the shear property of the basement lying below the sediment which is estimated about 3±1m thick.

Underwater Target Localization Using the Interference Pattern of Broadband Spectrogram Estimated by Three Sensors (3개 센서의 광대역 신호 스펙트로그램에 나타나는 간섭패턴을 이용한 수중 표적의 위치 추정)

  • Kim, Se-Young;Chun, Seung-Yong;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.173-181
    • /
    • 2007
  • In this paper, we propose a moving target localization algorithm using acoustic spectrograms. A time-versus-frequency spectrogram provide a information of trajectory of the moving target in underwater. For a source at sufficiently long range from a receiver, broadband striation patterns seen in spectrogram represents the mutual interference between modes which reflected by surface and bottom. The slope of the maximum intensity striation is influenced by waveguide invariant parameter ${\beta}$ and distance between target and sensor. When more than two sensors are applied to measure the moving ship-radited noise, the slope and frequency of the maximum intensity striation are depend on distance between target and receiver. We assumed two sensors to fixed point then form a circle of apollonios which set of all points whose distances from two fixed points are in a constant ratio. In case of three sensors are applied, two circle form an intersection point so coordinates of this point can be estimated as a position of target. To evaluates a performance of the proposed localization algorithm, simulation is performed using acoustic propagation program.

Discrimination of Local Microearthquakes and Artificial Underground Explosions on the Basis of Time-Frequency Domain (시간-주파수 영역에서의 국지 미소지진과 지하인공폭발의 구별)

  • 김소구;박용철
    • The Journal of Engineering Geology
    • /
    • v.7 no.1
    • /
    • pp.63-79
    • /
    • 1997
  • In this study, our purpose is to develop a technique to discriminate artificial explosions from local microearthquakes on the basis of time-frequency domain. To obtain spectral features of artificial explosions and microearthquakes, we used 3-d spectrograms(frequency, time and amplitude) because this is a useful tool to study the frequency content of entire seismic waveforms observed at local and regional distances (e. g., Kim et al., 1994). P and S waves from quarry blasts show that frequency content of dominant amplitude appeared above 10 Hz and Rg phases that are observed at near distance ranges. But P and S waves from microearthquakes have more broad frequency content as well as below 10 Hz. And for discrimination, Pg/Lg spectral ratio is performed below 10 Hz. In order to select time windows we computed group velocity using multiple filter method(MFM) and removed free surface effects from all 3-components data for improving on data quality. Next step, we computed Fast-Fourier transform, and a log average spectral amplitude over seven frequency bands : 0.5 to 3, 2 to 4, 3 to 5, 4 to 6, 5 to 7, 6 to 8 and 8 to 10 Hz. The best separation is observed from 6 to 8 Hz.

  • PDF

Passive sonar signal classification using graph neural network based on image patch (영상 패치 기반 그래프 신경망을 이용한 수동소나 신호분류)

  • Guhn Hyeok Ko;Kibae Lee;Chong Hyun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.234-242
    • /
    • 2024
  • We propose a passive sonar signal classification algorithm using Graph Neural Network (GNN). The proposed algorithm segments spectrograms into image patches and represents graphs through connections between adjacent image patches. Subsequently, Graph Convolutional Network (GCN) is trained using the represented graphs to classify signals. In experiments with publicly available underwater acoustic data, the proposed algorithm represents the line frequency features of spectrograms in graph form, achieving an impressive classification accuracy of 92.50 %. This result demonstrates a 8.15 % higher classification accuracy compared to conventional Convolutional Neural Network (CNN).

Influence of the Geoacoustic Parameters of Seabed Appearing in the Broadband Interference Pattern by Moving Targets (이동 표적에 의한 광대역 간섭패턴의 지음향 인자 영향)

  • Hahn, Joo-Young;Lee, Hyeong-Uk;Lee, Bong-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.43-50
    • /
    • 2007
  • A range-frequency interference pattern is analyzed in the course of the propagation of ship noise in shallow water. It has been shown to exhibit striated bands of intensity maxima and minima in the spectrogram. The slope of the striations is an invariant of the modal interference and is described by a waveguide invariant parameter $\beta$. It turns out that this interference pattern is useful for identifying the physical properties of the waveguide such as seabed properties. In this article, the interference pattern is analyzed using image processing techniques to produce the distribution of the beta and the effects of sediment types and geoacoustic parameters on beta distribution are examined and characterized by moments of the distributions.