• Title/Summary/Keyword: 거더패널

Search Result 19, Processing Time 0.028 seconds

An analytical study on behavior of the girder panel in simplified composite deck under construction loadings (가설하중 하에서 초간편 강합성 바닥판 거더패널의 거동에 관한 해석적 연구)

  • Han, Deuk-Cheon;Kim, Sang-Seup;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1537-1542
    • /
    • 2007
  • In this study, based on a I-roll embedded steel composite deck, it is suggested a new type of simplified composite deck and analyzed under construction loading. Using ABAQUS, it's estimated effects of welding amount of steel plate and I-section, existence of a hole of I-section's flange, and a location of hole. For a reasonable verification of modeling, compare Euler-Beam theory with F.E.M models. In result, it is verified that change of welding amount increase more maximum bending tension stresses at the central part's section of span when elements are partial-welded. Also, verify that deflection is slightly increased when a hole existed compared with no hole.

  • PDF

Numerical Analysis of Inelastic Lateral Torsional Buckling Strength of HSB800 Steel Plate Girders with Doubly Symmetric Section (이축대칭단면 HSB800 강재 플레이트거더의 비탄성 횡비틂좌굴강도의 해석적 평가)

  • Park, Yong Myung;Lee, Kun Joon;Choi, Byung Ho;Hwang, Min O
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • In this paper, lateral-torsional buckling(LTB) strength of HSB800 steel plate girder under uniform bending moment was estimated by the nonlinear analysis. Doubly symmetric sections with slender, noncompact and compact webs were considered and the LTB strength in the inelastic range was estimated by taking initial imperfection and residual stress into account. For the numerical analysis, single-panel model and three-panel model were considered and analysis of SM490 steel plate girder was performed to judge the validity of the constructed models by comparing the results with AASHTO, AISC, Eurocode and KHBDC(LSD) codes. By using the same models, LTB strength of HSB800 girder was evaluated and it was acknowledged that the current codes can be applied to HSB800 girders with doubly symmetric section in the inelastic LTB range.

Numerical Analysis of Inelastic Lateral Torsional Buckling Strength of HSB800 Steel Plate Girder with Monosymmetric Section (일축대칭단면 HSB800 강재 플레이트거더의 비탄성 횡비틂좌굴강도의 해석적 평가)

  • Park, Yong Myung;Lee, Kun Joon;Choi, Byung Ho;Hwang, Min O
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.153-164
    • /
    • 2013
  • In this paper, lateral-torsional buckling(LTB) strength of HSB800 high strength steel plate girder with monosymmetric section under uniform moment was evaluated by nonlinear analysis. The unbraced length in inelastic LTB range was considered for the sections whose smaller or larger flange is in compression with slender, noncompact and compact web. Analyses of SM490 steel girders were first performed with the single-panel and three-panel model to judge the validity of the constructed models by comparing those results with Eurocode 3, AASHTO and AISC codes. By using the same models, LTB strength of HSB800 girder was evaluated and it was found that the sections whose smaller flange is in compression with noncompact flange-slender/noncompact web could not reach the flexural strength of the design codes.

An analytical study on behavior of the girder pannel in simplified composite deck during construction (초간편 강합성 바닥판 거더패널의 가설중 거동에 관한 해석적 연구)

  • Han, Deuk-Choen;Choi, Seung-Ho;Yoon, Ki-Yong;Yi, Gyu-Se;Kim, Sang-Seup
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.108-111
    • /
    • 2007
  • 최근 현장타설 바닥판의 대안으로 강합성 바닥판을 이용하여 바닥판의 공용년수를 증진시키고 공기 단축 및 시공의 간편성, 교통흐름의 원활화등을 위한 연구가 활발히 이루어지고 있다. 본 논문에서는 기존 I형강 매입형 강합성 바닥판을 기본으로 한 새로운 형식의 초간편 강합성 바닥판을 제시하여 거동패널의 거동에 대해 연구하였다. 하부강판과 I형강의 용접량의 변화, I형강의 복부에 유공 유무, 유공의 위치변화에 대한 특성을 파악하였다 이때 H형강의 상부 플랜지는 강판과 용접된 것으로 가정하였으며, 가설시 합성전 단면에 대한 거동 분석이므로 하중은 강판, I형강, 콘크리트의 자중만 고려되었다. 연구결과, 하부강판과 I형강의 용접길이 변화시 전체용접에 비해 30%용접을 수행시 중앙부 단면에서 최대 휨 인장응력이 증가하는 결과를 보였으며, I형강 복부에 유공이 있을시 유공이 없는 경우 보다 처짐량이 약간 증가함을 확인하였다. 또한 I형강 복부의 유공 위치를 변화시킨 결과 거더패널 강바닥판의 거동에는 영향을 받지 않는 것으로 나타났다.

  • PDF

Experimental Study on the Top- Lateral Bracing of U-Type Steel Box Girders Using Real Size Specimen: Torsional Stiffness (실물모형 시험를 이용한 U형 강박스거더의 상부 수평브레이싱에 관한 실험적 연구: 비틂강성)

  • Shim, Nak Hoon;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.447-456
    • /
    • 2006
  • In this study, a torsional test for U-type steel box girders was performed to observe the effects of the kind of panel for top lateral walateral bracings on the torsional behavior of the U-type steel girder system. For the structural tests, the test specimen with a two-thirds scale of the system actually constructed in the field was used. In the torsional test to observe the efects of top lateral bracings, the most economical arrangement of the top lateral bracing was found to be the panel width to length ratio of 1:1.5 with the inclined angle of $40^{\circ}$.

Experimental Study on the Presentation of Adequate Type and Number of Bracing Panel for Design of U-Shaped Steel Box Girder (U형 강박스거더의 휨설계를 위한 합리적인 브레이싱의 형태 및 패널 수 도출에 관한 실험적 연구)

  • Shim, Nak-Hoon;Park, Young-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.68-76
    • /
    • 2007
  • In the present study, tests for U-type steel box girder are performed to observe the effects of W-type and X-type of top lateral bracings on the bending behavior of the U-type steel box girder system. Another objective of the present study is to investigate the adequacy of the currently available design formula. For the structural tests, the test specimen with two third scale of the system constructed in the field was used. In this test, several different spacings are used for the top lateral bracings. The stresses measured from the bending tests are compared with those by the formula proposed by Helwig. An adequate type and the required number of panel for diagonal bracing was obtained.

Support Deflection Effects in Slabs with Beam and Girder (보-거더 시스템 슬래브에서 지지부 처짐영향에 관한 연구)

  • 곽효경;송종영
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.237-249
    • /
    • 1998
  • In this study the support deflection effects in beam-girder slabs which are broadly being adopted in building structures are studied for both distributed loads and concentrated vehicle loads. Taking the finite element analysis of slabs supported with one or two cross beams, the member forces of slabs including the support stiffness have been calculated. Based on the obtained numerical results and regression analysis of those, correction factors of member forces for slabs supported with girders and cross beams have been proposed. Finally, the validity of the proposed correction factors are demonstrated through a typical design example.

  • PDF

A Study on Flexural Ductility of Longitudinally Stiffened Plate Girders (수평보강재가 설치된 플레이트 거더의 휨 연성에 관한 연구)

  • Yoon, Dong Yong;Kim, Kyung Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.643-653
    • /
    • 2007
  • The ultimate bending strength and flexural ductility performance of longitudinally stiffened plate girders fabricated with mild steel were investigated utilizing nonlinear incremental finite element analysis. AASHTO LRFD (2002) design specifications were reviewed for possible application of longitudinally stiffened plate girders as compact sections. In order to investigate compact section requirements for plate girders with longitudinal stiffeners in webs, a number of full-scale plate girders were modeled and analyzed up to the collapse under pure bending condition. It was found that the slenderness of sub panel of the webs, the stiffness of longitudinal stiffeners, and the slenderness of compression flanges are key parameters governing the flexural ductility of the plate girders. It was also found from finite element analysis that longitudinally stiffened plate girder sections can satisfy compact section requirements both in full plastic moment capacity and flexural ductility requirement. New design equations have been proposed for longitudinally stiffened plate girders to be treated as compact sections.

A Numerical and Experimental Study on Structural Performance of Noncomposite and Composite Eco-Arch Structures subjected to Concentrated Loads (집중하중을 받는 비합성.합성 생태아치구조물의 성능평가를 위한 수치해석 및 모형실험 연구)

  • Kim, Yong-Hee;Park, Jong-Sup;Lee, Young-Ho;Oh, Min-Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 2010
  • In this study, noncomposite and composite eco-arch structures with I-beams and precast concrete(PC) decks were investigated. Four finite-element models(a steel-girder model, a steel-girder-and-several-PC-panels model, a three-steel-girder model, and a three-steel-girder-and-several-PC-panels model) using a general finite-element program, ABAQUS, were reviewed to predict the strength of the noncomposite and composite arch structures. Based on the results of the finite- element analysis, the behaviors of the four models were investigated, and deflection and strain gauges for the experimental specimen consisting of three steel girders and several PC panels were set up to obtain the ultimate strength. The ultimate strength of the specimen was estimated to be 1,961kN. The ultimate strength was much larger than the 1,380-kN load calculated using AASHTO LRFD Bridge Design Specifications(2007). The noncomposite and composite arch bridges were found to have enough strength for safety.

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.