• Title/Summary/Keyword: 갱도심도

Search Result 9, Processing Time 0.033 seconds

Development of Subsidence Hazard Estimation Method Based on the Depth of Gangway (갱도의 심도 정보만을 고려한 지반침하위험도 평가법 개발)

  • Jung, Yong-Bok;Song, Won-Kyong;Kang, Sang-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.272-279
    • /
    • 2008
  • This paper describes the development of a simple and quantitative subsidence hazard estimation method appropriate to Korean coal mines using gangway depth information only. In spite of simpleness of estimation method, this new method gives good results close to those obtained using influence function method when applying to a virtual rectangular excavation model and to a closed mine where actual subsidence occurred. Therefore, this method can be effectively applied to the identification of zones liable to subsidence over closed coal mine in Korea where the shape of extraction is very complex and usually unknown.

Extract the main factors related to ground subsidence near abandoned underground coal mine using PCA (PCA 기법을 이용한 폐탄광 지역의 지반침하 관련 요인 추출)

  • Choi, Jong-Kuk;Kim, Ki-Dong
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.301-304
    • /
    • 2007
  • 본 연구에서는 폐탄광 지역에서 발생하는 지반침하에 영향을 주는 주요 요인들을 추출하기 위하여 다변량 통계분석 방법의 하나인 주성분분석(Principle Component Analysis : PCA)기법과 지리정보시스템 (Geographic Information System : GIS)을 이용하였다. 이를 위해 연구지역에서 수행한 지표지질조사, 정밀조사, 실내암석시험 등으로부터 취득된 자료를 데이터베이스로 구축하고, 지반침하 위험지역 분포를 공간적으로 해석할 수 있는 지질, 토지이용, 경사도, 지표로부터 지하 갱도까지의 심도, 갱도의 지표상 위치로부터의 수평거리, 지하수심도, 투수계수, RMR(Rock Mass Rating) 값을 분석대상으로 선정하였다. 각 요인들이 연구지역 전체에 걸쳐 분포하도록 GIS의 공간분석 기법의 하나인 표면분석(Surface Analysis), 버퍼링기법(Buffering) 및 내삽법(Interpolation)을 이용하여 래스터 데이터베이스로 구축하고 이로부터 추출된 자료들을 입력값으로 하는 주성분분석을 수행하였다. 주성분분석 결과 폐탄광 지역의 지반침하에 영향을 주는 주요인을 추출하는 것이 가능하였으며, 연구지역은 지질 및 지반강도 관련 요인이 침하발생의 가장 큰 요인인 것으로 분석되었다.

  • PDF

A Study on the Correlation between Coal Mining Subsidence and Underground Goaf (페탄광지역의 지반침하발생과 지하 채굴적의 상관관계 연구)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Song, Kyo-Young;Jo, Min-Jeong
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.453-464
    • /
    • 2008
  • This study is to examine a relation between coal mining subsidence occurrence at abandoned underground coal mines and underground goaf with respect to surface geology, subsurface structure, depth and thickness of coal beds and the distribution of drifts. A study is carried out at the site where susceptibility of coal mining subsidence was proven high in a previous study. In that previous study, the susceptibility of coal mining subsidence was spatially analyzed by GIS using digitized geological maps, investigation reports, digitized mining tunnel maps without consideration of subsurface structure and the multi-level arrangement of drifts. Here we analyze geological characteristics around the goaf and the distribution of coal seam based upon digitized geological maps and investigation reports on the study area. And digitized mining tunnel maps are also used to analyze the depth and multi-level arrangement of drifts. The results show that weakened surface rock strength, relatively shallow depth and large thickness of coal seam below the surface are closely related to the coal mining subsidence occurrence. Complicatedly inter-connected drifts, shallow depth of drifts and surface rock fractures are revealed as additional control factors affecting coal mining subsidence. These factors examined in this study as well as original factors should be taken into account for the quantitative estimation of coal mining subsidence occurrence at abandoned underground coal mine.

A Case Study on the Ventilation and Heat Environment in a Underground Limestone Mine with Rampway (Rampway 설치 석회석 광산내 환기 현황 및 열환경 분석 사례연구)

  • Kim, Doo-Young;Lee, Seung-Ho;Jeong, Kyu-Hong;Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.163-172
    • /
    • 2012
  • As more diesel engines have been employed in underground limestone mines with large cross section, underground space environment is worsened by diesel exhausts and heat flow. This paper aims for the ultimate goal to optimize the work place environment through assuring the optimal required ventilation rate based on the analysis of the airflow, diesel exhaust gas concentrations and the effects of mechanization and deepening working face on temperature and humidity. Due to the insufficient capacity of the main exhaust fan and poor airway management, stagnant airflows were observed at various locations, while the flow direction was reversed instantly with passing diesel equipment and the flow reversal was also made by the seasonal variation of the outside surface weather. During the loading operation, CO concentration measurements were found to be frequently higher than the threshold limit of 50 ppm, and most of the $NO_2$ measurements during drilling and loading operations shows even more serious levels surpassing the permissible limit of 3 ppm. The actual ventilation quantity was considerably less than the required quantity estimated by the mine health and safety law, and this shortage problem was less serious in colder winter showing more effectiveness of the natural ventilation.

Numerical Analysis of Railway Roadbed Stability with Respect to Underground Cavities and Rock Condition: A Case Study of Shafts at Majang Mine (전산해석을 통한 지하 공동 및 암반 조건에 따른 철도지반 안정성 평가: 마장광산 갱도를 대상으로)

  • Jang, Kyunghwan;Lee, Dongwon;Min, Kyungnam;Chung, Chanmook;Yu, Jaehyung;Lee, Gyeseung
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.295-306
    • /
    • 2021
  • This study used numerical modeling to investigate the stability of railway roadbed in areas with various underground cavities and rock conditions associated with mining activities. It compared combined loads from both passenger and freight trains with loads from only passenger trains. Stability was assessed with reference to the Korean government standards for railway subsidence allowance and railway warping repair. Sufficient stability regarding the railway subsidence allowance standard was not achieved when cavities were at depths of <5 m. The criteria for requiring railway warping repair were met when cavities were at depths of <15 m, depending on the rock fracture condition. This study provides the first report on systematic analysis land subsidence related to cavity size and rock fracture conditions associated with mining activities. We expect that this study could serve as an important reference for railway construction in mining areas.

Analysis of Pillar Stability for Ground Vibration and Flyrock Impact in Underground Mining Blasting (발파진동 및 비산충격에 대한 광주 안정성 분석)

  • Park, Hyun-Sik;Kim, Ji-Soo;Ryu, Bok-Hyun;Kang, Choo-Won
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.9-20
    • /
    • 2012
  • These days, mining industry prefers underground development for large mining because of exhaustive minning resources and large drafts and mining cavities thanks to extensive distribution of heavy excavation machines. In a mining design, to control collapse of cavities and secure stability, design of cavities and pillars are considered as very important. Therefore, this study obtained a prediction equation of blasting vibration through instrumentation for underground cavities. And we obtained theoretical shock vibration imposed on pillar through fragmentation analysis and measurement of flyrock distance. To examine the influence of pillar in underground mining blasting, we carried a finite element analysis and compared the result with prediction equation of blasting vibration, and shock vibration of flyrock when a impact was imposed on pillar and theoretical shock vibration.

Analysis of Sinkhole Formation over Abandoned Mine using Active-Passive-Active Finite Elements (폐광지역에서의 싱크홀 발생 규명을 위한 Active-Passive-Active 유한요소 기법 연구)

  • Deb Debasis;Shin Hee-Soon;Choi Sung O.
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.411-422
    • /
    • 2004
  • Sinkhole subsidence occurs over abandoned mine workings and can be detrimental to human lives, damage to properties and other surface structures. In this study, simulation of sinkhole development process is performed using special finite element procedure. Especially, creation of mine voids due to roof falls and generation of goaf from broken rocks are simulated using active-passive-active finite elements. An active or solid element can be made passive or void once the tensile failure criterion is satisfied in the specified sinkhole formation zone. Upon completion of sinkhole development process, these passive elements in again be made active to simulate goal region. Several finite element models are analyzed to evaluate the relationships between sinkhole formation with width of gallery. depth of mine, roof condition and bulking factor of roof rocks. This study demonstrates that the concept of passive elements in numerical analysis can be used effectively for analyzing sinkhole formation or roof fall phenomenon in general.

Heavy Metal Contamination of Soils and Stream Sediments at the Sanggok Mine Drainage, Upper Chungju Lake, Korea (충주호 상류, 상곡광산 수계에 분포하는 토양과 하상퇴적물의 중금속 오염)

  • 이현구;이찬희
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 1998
  • Heavy metal contamination in subsurface soils and stream sediments at the Suggok mine area were investigated on the basis of major, trace and rare earth elements geochemistry and mineralogy. The Sanggok mine area is mainly composed of Cambro-Ordovician carbonate rocks. The mine had been mined for Pb-Zn-Fe and Au- Ag, but already closed in past. For major elements, especially Fe (mean value=18.58 wt.%) and Mn (mean value=4. 18 wt.%) are enriched in soils, and the average enrichment indices of soils and sediments are 6.84 and 1.54, respectively. The average enrichment index of rare earth elements are 0.92 of mining drainage sediments and 0.52 of subsurface soils on the tailing dam. Concentrations of minor and/or environmental toxic elements in those samples range from 29 to 3400 for As,1 to 11 for Cd, 35 to 292 for Cu, 50 to 1827 for Pb, 1 to 22 for Sb and 112 to 2644 for Zn. Extremely high concentrations (mean values) are found in subsurface soils on the tailing dam (As=2278, Cd=7, Cu=206, Pb=1372, Sb=14 and Zn=2231 ppm, respectively). Average enrichment index normalized by composition of non-mining drainage sediments is 2.42 in mining drainage sediments and 25.47 in subsurface soils on the tailing dam. Based on EPA value, enrichment index of toxic elements is 0.53 in non-mining drainage sediments, 1.84 in mining drainage sediments and 23.71 in subsurface soils on the tailing dam. As a results from X-ray powder diffraction method, mineral composition of soils and sediments near the mine area varied in part, and are calcite, dolomite, magnesite, quartz, mica, chlorite and clay minerals. With the separation of heavy minerals, soils and sediments of highly concentrated toxic elements included some pyrite, arsenopyrite, sphalerite, galena, goethite and hydroxide minerals on the polished sections.

  • PDF

A Study on the Purpose-in-Life Level in Patients with Traumatic Brain Injury (외상성 뇌 손상 환자의 삶의 목적 수준에 관한 연구)

  • Rho, Seung-Ho;Kim, Sung-Woo
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.7 no.2
    • /
    • pp.184-195
    • /
    • 1999
  • Objectives : As traumatic brain injury(TBI) leaves chronic sequelae in mind and body, the injured patients should rectify the meaning and object that they have pursued in their lives and set up a new purpose in life that they may make the rest of their lives meaningful. This study was designed to investigate the purpose and quality of life levels and the influence of demographic and clinical variables on the levels in the patients with TBI, and to be of some help to their rehabilitation. Methods : In order to assess the purpose in life(PIL) and the quality of life(QOL) levels, Purpose-in-Life Test, Sickness Impact Profile, Quality of Life Index, Head Injury Symptom Ckecklist, and Neurobehavioral Rating Scale were administered to the subjects. The subjects were thirty-two patients with TBI and the same numbered normal controls. The TBI group was composed of 16 to 65 year-aged patients who had received mild or severe TBI at least 12 months before, and the controls were siblings or friends of the patients whose age, sex, and educational level were similar to them. Results : 1) The PIL and QOL levels of the patients with TBI remained significantly lower than that of control group after their symptoms of injury were stabilized(p<.01, p<.01). 2) The mean PIL score of TBI group was $58.8{\pm}23.2$, which was to be regarded as the level of existential vacuum. 3) The PIL level of TBI group was significantly correlated with the QOL level(p <.01). 4) The subgroup with lower PIL level in patients with TBI has significantly higher rate of female than that with higher PIL(p<.05), the PIL level of female patients was significantly lower than that of male patients(p <.05). 5) The significant differences in PIL levels were not found, in which comparison was performed between each pair of subgroups of patients with TBI divided by severity of injury(mild vs severe), marital status(married vs unmarried), and occupational status prior to injury(employed vs unemployed). Conclusion : The PIL of patients with TBI still remained the level of existential vacuum after symptoms of sequelae had been stabilized, The QOL level was also extremely low, and as the PIL level was low the QOL was also low. The demographic and clinical variables except sex did not have influence on the PIL level in brain-injured patients. It is suggested that every patient should admit their mental and physical limitations caused by brain injury and revise their purpose in life for successful rehabilitation.

  • PDF