• Title/Summary/Keyword: 갯벌 탐지

Search Result 11, Processing Time 0.027 seconds

Extraction of DEM in the Southern Tidal Flat of Kanghwa Island using Satellite Image (위성영상을 이용한 강화도 남단갯벌의 DEM 추출)

  • 박성우;정종철
    • Spatial Information Research
    • /
    • v.11 no.1
    • /
    • pp.13-22
    • /
    • 2003
  • The study of geomorphology of tidal flat using remote sensing image has been considered useful because of it's ability to acquire data periodically. Especially, the Near Infrared band of satellite image has been used to divide between land and sea area. This study extracted a borderline of the tidal flat using Landsat-5 images and generated DEM(Digital elevation model) using tide level data as elevation value. DEM is a useful tool for three-dimensional survey of geomorphology and can be used for survey of tidal flat. This study divided 8 images of 1990's into two parts - before 1994 and after 1994 - and generated DEM respectively. In this work, the areas of tidal flats are calculated and it was revealed the area of tidal flat was decreased after 1994.

  • PDF

Preliminary Study for Tidal Flat Detection in Yeongjong-do according to Tide Level using Landsat Images (Landsat 위성을 이용한 조위에 따른 영종도 갯벌의 면적 탐지에 관한 선행 연구)

  • Lee, Seulki;Kim, Gyuyeon;Lee, Changwook
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.639-645
    • /
    • 2016
  • Yeongjong-do is seventh largest island in the west coast of Korea which is 4.8 km away in the direction of south-west from Incheon. The mudflat area around the Yeongjong-do has variable dimension according to tide level. In addition, Yeongjong-do is important area with high environmental value as wintering sites for migratory birds. The mudflat of Yeongjong-do is also meaningful region because it is used as place of education and tourist attraction. But, there are increasing concerns about preservation of mudflat area caused by artificial development such as land reclamation project and Incheon airport construction. In this paper, mudflat area was detected using Landsat 7 ETM+ images that United States Geological Survey (USGS) is providing the data in 16 days period. The false color composite was made from band 7, 5, and 3 that could dividing boundary between water and land for the purpose of appearance of boundary line in mudflat region. This area was calculated using results of classification based on false color composite images and was digitized through repetitive algorithm during research of period. Therefore, the change of northeastern area in Yeongjong-do was detected according to tide level during 16 years from 2000 to 2015 on the basis of providing period at tide station. This paper will expect as indicator for range of area in same tide level prior to the start of the research for preservation of mudflat. It will be also scientific grounds about change of mudflat area caused by artificial development.

West seacoast wetland monitoring using KOMPSAT series imageries in high spatial resolution (고해상도 KOMPSAT 시리즈 이미지를 활용한 서해연안 습지 변화 모니터링)

  • Sunwoo, Wooyeon;Kim, Daeun;Kim, Seongkyun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.429-440
    • /
    • 2017
  • A series of multispectral high-resolution Korean Multi-Purpose Satellite (KOMPSAT) images were analyzed to detect the geographical changes in four different tidal flats in the west coast of South Korea. The method of unsupervised classification was used to generate a series of land use/land cover (LULC) maps from the satellite images, which were used as the input of the temporal trajectory analysis to detect the temporal change of coastal wetlands and its association with natural and anthropogenic activities. The accurately classified LULC maps extracted from the KOMPSAT images indicate that these multispectral high-resolution satellite data is highly applicable to generate good quality thematic maps for extracting wetlands. The result of the trajectory analysis showed that, while the tidal flat area of Gyeonggi and Jeollabuk provinces was estimated to have changed due to tidal effects, the reductive trajectory of the wetland areas belonging to the Saemangeum province was caused by a high degree of human-induced activities including large reclamation and urbanization. The conservation of the Jeungdo Wetland Protected Area in Jeollanam province revealed that the social and environmental policies can effectively protect coastal wetlands from degradation. Therefore, monitoring for wetland change using high resolution KOMPSAT is expected to be useful to coastal environment management and policy making.

Evaluating Changes in Blue Carbon Storage by Analyzing Tidal Flat Areas Using Multi-Temporal Satellite Data in the Nakdong River Estuary, South Korea (다중시기 위성자료 기반 낙동강 하구 지역 갯벌 면적 분석을 통한 블루카본 저장량 변화 평가)

  • Minju Kim;Jeongwoo Park;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.191-202
    • /
    • 2024
  • Global warming is causing abnormal climates worldwide due to the increase in greenhouse gas concentrations in the atmosphere, negatively affecting ecosystems and humanity. In response, various countries are attempting to reduce greenhouse gas emissions in numerous ways, and interest in blue carbon, carbon absorbed by coastal ecosystems, is increasing. Known to absorb carbon up to 50 times faster than green carbon, blue carbon plays a vital role in responding to climate change. Particularly, the tidal flats of South Korea, one of the world's five largest tidal flats, are valued for their rich biodiversity and exceptional carbon absorption capabilities. While previous studies on blue carbon have focused on the carbon storage and annual carbon absorption rates of tidal flats, there is a lack of research linking tidal flat area changes detected using satellite data to carbon storage. This study applied the direct difference water index to high-resolution satellite data from PlanetScope and RapidEye to analyze the area and changes of the Nakdong River estuary tidal flats over six periods between 2013 and 2023, estimating the carbon storage for each period. The analysis showed that excluding the period in 2013 with a different tidal condition, the tidal flat area changed by up to approximately 5.4% annually, ranging from about 9.38 km2 (in 2022) to about 9.89 km2 (in 2021), with carbon storage estimated between approximately 30,230.0 Mg C and 31,893.7 Mg C.

DEM Generation of Tidal Flat by the Area Based Matching Method Using Digital Aerial Stereo Images (디지털 입체 항공사진의 영역기반매칭법에 의한 갯벌 DEM 제작)

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Kim, Duk-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.42-52
    • /
    • 2010
  • The purpose of this study is to produce digital elevation model (DEM) in the Jebu tidal flat, one of the west coast of the Korean Peninsula, by means of photogrammetric techniques from aerial digital stereo-images. Produced DEM would be become the fundamental data for change detection of the sediment and erosion. To do so, epipolar line is established by relative orientation. Area-based matching is then carried out based on this line and matching size according to surface property of tidal flat after a classified image is produced from reflectance and texture of the surface. As the results, DEM generated by the proposed method showed subtle changes in height more precisely than DEM using the fixed matching size and DEM by the commercial S/W in the region, such as tidal flats having few level differences.

Some case histories to detect underwater buried objects by electrical and magnetic methods (수중 매장물 조사에 응용되는 전기 및 자기 탐사사례)

  • JUNG Hyun Key;Park Yeong-Sue;Lim Mutaek;Rim Hyoungrae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.118-137
    • /
    • 2004
  • Recently underwater geophysical problems for historical relics or UXO's are raised frequently. This study includes the applicabilities and limitations of the recent underwater metal detector and domestic case stories for underwater survey by electrical and magnetic method. Direct or indirect case stories are electrical and vertical magnetic gradiometry surveys beneath Han-river bottom for planning subway tunnel, electrical exploration on lake-bottom, electrical exploration on the tidal flats using high-power transmitter, and borehole three-component magnetic and electromagnetic surveys for detecting the undersea objects. A design of potable real-time, high-speed measurement system using multi-channel array sensors is also introduced here. Further study will be focussed on practical field applications of the fast water-bottom scanning system which is lately required by actual field.

  • PDF

DEM Generation of Tidal Flat in Suncheon Bay Using Digital Aerial Images (디지털 항공사진을 이용한 순천만 갯벌 DEM 제작)

  • Ahn, Ki-Weon;Lee, Hyo-Seong;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.411-420
    • /
    • 2011
  • In this study, a digital elevation model (DEM) in tidal flat of Suncheon Bay, one of the most ecological preserved area in the world, was generated from digital aerial stereo-images. The focal lengths for the aerial stereo-images were adjusted using ground control points (GCPs) in order to improve the accuracy of camera parameters. We proposed matching sizes suitable for generating DEM in tidal flat and a method for eliminating excessive position errors using intersection-distance($P_R$) threshold value. The accuracies of the DEM generated from the proposed method as well as the commercial S/W were compared with the elevation profiles measured by Total Station in the filed. As the results, the DEM generated by the proposed method showed better result (maximum deviation is a -21 centimeters) with detailed topography than DEM by the commercial S/W in the region. These results suggest that the DEM of tidal flat, which hardly obtained with the traditional methods, can be generated from digital aerial images by applying the proposed method in this study. We believe that the generated DEM in tidal flat can be an essential data for monitoring the sediment erosion and deposit of the tidal flat.

A Change Detection of Western Coastal Land-Use using Landsat TM Images (Landsat TM 영상을 이용한 서해안 토지이용의 변화 추적)

  • 양인태;박재국;김흥규
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.4
    • /
    • pp.411-420
    • /
    • 1999
  • Coastal development and reclamation work make environment of shore destroy, such as rapid change of land use and destruction of wet-land and ocean ecosystem. Therefore new technique to detect change have been needed. This study designed new change detection method and applied to study area. The change detection image and quantitative change area by each classes are calculated. Also, this study can use the basic idea-determination data for coastal development and city plan as the sense of sight by changed images that changed from any land-cover to any land-cover between two dates.

  • PDF

Monitoring Spatiotemporal Changes of Tidal Flats in Go-Gunsan Islands by Environmental Factors using Satellite Images (위성영상을 활용한 환경 요인에 따른 고군산 군도 간석지의 시공간적 변화 탐지)

  • Lee, Hong-Ro;Lee, Jae-Bong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.34-43
    • /
    • 2005
  • We will catch the spatio-temporal changes that analyse the unknown topography of Go-Gunsan Islands using Landsat TM satellite images into an unsupervised ISODATA classification and a supervised nearest likelihood classification. Each sedimental topography has the different characteristics according to building the Saemangeum embarkment. We will deal with the distribution of sedimental shapes using ERDAS Imagine 8. 6. The result that classifies specifically topographic properties of our research area be considered to get use of establishing the reclaiming program and predicating the reclaimed sedimental topography. The research area can be classified into tidal flats and sea level using band 4 among 7 bands of Landsat TM. Also band 5 can be used to classify the special unknown shapes of tidal flats. We will clarify the efficiency that spatio-temporal sedimental changes can be extracted through processing satellite images. Therefore, the spatio-temporal unknown topography change monitoring using satellite images is expected to be very useful to clarify whether the tidal flat is generated or not in the Go-Gunsan Islands at the outer side of the embarkment after constructing completely the Saemangeum tidal embarkment.

  • PDF